001     905718
005     20220727192237.0
024 7 _ |a 2128/31581
|2 Handle
037 _ _ |a FZJ-2022-00943
100 1 _ |a Scham, Moritz
|0 P:(DE-Juel1)187009
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Helmholtz AI virtual conference 2021
|c online
|d 2021-04-14 - 2021-04-15
|w Germany
245 _ _ |a DeGeSim and the High Granularity Calorimeter for the CMS Experiment at the Large Hadron Collider
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1658924469_15902
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a We present the beginning work on fast simulations for the new High Granularity Calorimeter (HGCal), which will become part of the CMS experiment at the Large Hadron Colider (LHC) at CERN/Geneva. It will replace the current end-cap calorimeters for data acquisition in 2027. The design of the new calorimeter is driven by the increased particle density following the High Luminosity Upgrade of the LHC. This enforces a complex geometry of the active sensor and a massive increase from about 7k currently to more than 3 million individual channels for each of the two future end-cap calorimeters. Traditionally, particle physics has used detailed simulations of detectors and physics. These simulations are of high precision and can describe minute details. The price for this precision is a large computational power requirement. Since the predicted computational resources will not be sufficient for the traditional stepwise simulations, we will explore deep learning techniques combining fast inference with generative models, e.g., physics-informed GANs-VAEs hybrids for simulations. In particular, Graph Neural Networks are a promising candidate to describe thecomplex geometry of the new detector. This project is part of the Helmholtz AI funded project DeGeSim.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a ZT-I-PF-5-3 - Deep Generative models for fast and precise physics Simulation (DeGeSim) (2020_ZT-I-PF-5-3)
|0 G:(DE-HGF)2020_ZT-I-PF-5-3
|c 2020_ZT-I-PF-5-3
|x 1
700 1 _ |a Bhattacharya, Soham
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Borras, Kerstin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fedorko, Wojtek
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Katzy, Judith
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Krücker, Dirk
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
856 4 _ |u https://www.helmholtz.ai/fileadmin/HAICU/PDF/HelmholtzAIcon21_AbstractBook_DinA4_FV.pdf
856 4 _ |u https://juser.fz-juelich.de/record/905718/files/HelmholtzAIcon21_AbstractBook_DinA4_FV.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905718
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187009
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158080
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21