001     905742
005     20240712112851.0
024 7 _ |a 2128/30576
|2 Handle
037 _ _ |a FZJ-2022-00966
041 _ _ |a English
100 1 _ |a Stock, Jan
|0 P:(DE-Juel1)179375
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Building Simulation 2021
|g BS2021
|c Bruges
|d 2021-09-01 - 2021-09-03
|w Belgium
245 _ _ |a Ecological and Economic Analysis of Low-TemperatureDistrict Heating in Typical Residential Areas
260 _ _ |c 2021
300 _ _ |a 1-8
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1643200313_11321
|2 PUB:(DE-HGF)
520 _ _ |a Potential waste heat integration in low-temperature district heating (LTDH) systems is a main task for future sustainable heat supply. For evaluation of efficient LTDH integration in residential areas, investigations of the typical building stock are useful. In this study, we present an economic and ecologic investigation of two LTDH supply temperatures in multiple typical residential areas. We show which design have the strongest impact on efficient heat supply in terms of electricity usage and low specific heating costs. Therefore, we design nine representative residential areas derived from dwelling types of the German building stock. Within these areas, we investigate LTDH supply performance in combination with decentralized boosting heat pumps. In addition, we compare the results to an individual heat supply by air-water-heat pumps. The results show that the fraction of domestic hot water on total heat demand and the design of decentralized heat pump systems capacities impact LTDH operation efficiency. LTDH network installation with operation temperatures around 60 °C are most advantageous in residential areas with a high share of space heating demand.
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 0
700 1 _ |a Hering, Dominik
|0 P:(DE-Juel1)174202
|b 1
|u fzj
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 2
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/905742/files/BS2021_30154.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905742
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174202
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21