001     905743
005     20230127125339.0
024 7 _ |a 2128/30503
|2 Handle
037 _ _ |a FZJ-2022-00967
041 _ _ |a English
100 1 _ |a Ji, Yan
|0 P:(DE-Juel1)187069
|b 0
|e Corresponding author
111 2 _ |a Second Symposium on Artificial Intelligence for Science, Industry and Society
|g AISIS 2021
|c online
|d 2021-10-11 - 2021-10-15
|w Mexico
245 _ _ |a Deep Learning for weather forecasts
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1643025846_32038
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Accurate weather predictions are highly demanded by society. This study explores the adaptation of state-of-the-art deep learning architectures for video frame prediction in the context of weather applications. Proof-of-concept case studies are performed to 2m temperature forecasts up to 12 hours over central Europe, and precipitation nowcasting up to 2 hours over south China. The pixel-wise loss-based convolutional Long Short Term Memory architectures (ConvLSTM) and GAN’s variant architecture, stochastic adversarial video prediction (SAVP), are used and compared with standard persistent forecasts for 2m temperature, and traditional optical flow method for precipitation, respectively. Mean square error (MSE), anomaly correlation coefficient (ACC), and Structural Similarity Index (SSIM) are utilized to evaluate the 2m temperature forecast. The method of object-based diagnostic evaluation (MODE) was particularly adopted for precipitation nowcasting to evaluate the attributions of rain events in terms of centroid, intensity, and shape. Finally, the sensitivity was performed to test the models' robustness to input variables, target regions, and the number of training samples.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Verbundprojekt DeepRain: Effiziente Lokale Niederschlagsvorhersage durch Maschinelles Lernen (01IS18047A)
|0 G:(BMBF)01IS18047A
|c 01IS18047A
|x 1
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 2
536 _ _ |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)
|0 G:(EU-Grant)955513
|c 955513
|f H2020-JTI-EuroHPC-2019-1
|x 3
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 4
700 1 _ |a Gong, Bing
|0 P:(DE-Juel1)177767
|b 1
700 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 2
700 1 _ |a Mozaffari, Amirpasha
|0 P:(DE-Juel1)166264
|b 3
700 1 _ |a Mache, Karim
|0 P:(DE-Juel1)187076
|b 4
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 5
856 4 _ |u https://aisis-2021.nucleares.unam.mx/sessions/session7/ji/
856 4 _ |u https://juser.fz-juelich.de/record/905743/files/Yan_AISIS_2021-10-12.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905743
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187069
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)187076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21