000905746 001__ 905746
000905746 005__ 20220224125157.0
000905746 0247_ $$2doi$$a10.1093/cercor/bhab149
000905746 0247_ $$2ISSN$$a1047-3211
000905746 0247_ $$2ISSN$$a1460-2199
000905746 0247_ $$2Handle$$a2128/30420
000905746 0247_ $$2altmetric$$aaltmetric:107966463
000905746 0247_ $$2pmid$$apmid:34148082
000905746 0247_ $$2WOS$$aWOS:000708798900023
000905746 037__ $$aFZJ-2022-00970
000905746 082__ $$a610
000905746 1001_ $$0P:(DE-HGF)0$$aVos de Wael, Reinder$$b0
000905746 245__ $$aStructural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution
000905746 260__ $$aOxford$$bOxford Univ. Press$$c2021
000905746 3367_ $$2DRIVER$$aarticle
000905746 3367_ $$2DataCite$$aOutput Types/Journal article
000905746 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642772921_21910
000905746 3367_ $$2BibTeX$$aARTICLE
000905746 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905746 3367_ $$00$$2EndNote$$aJournal Article
000905746 520__ $$aThe temporal lobe is implicated in higher cognitive processes and is one of the regions that underwent substantial reorganization during primate evolution. Its functions are instantiated, in part, by the complex layout of its structural connections. Here, we identified low-dimensional representations of structural connectivity variations in human temporal cortex and explored their microstructural underpinnings and associations to macroscale function. We identified three eigenmodes which described gradients in structural connectivity. These gradients reflected inter-regional variations in cortical microstructure derived from quantitative magnetic resonance imaging and postmortem histology. Gradient-informed models accurately predicted macroscale measures of temporal lobe function. Furthermore, the identified gradients aligned closely with established measures of functional reconfiguration and areal expansion between macaques and humans, highlighting their potential role in shaping temporal lobe function throughout primate evolution. Findings were replicated in several datasets. Our results provide robust evidence for three axes of structural connectivity in human temporal cortex with consistent microstructural underpinnings and contributions to large-scale brain network function.
000905746 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000905746 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905746 7001_ $$0P:(DE-HGF)0$$aRoyer, Jessica$$b1
000905746 7001_ $$0P:(DE-HGF)0$$aTavakol, Shahin$$b2
000905746 7001_ $$0P:(DE-HGF)0$$aWang, Yezhou$$b3
000905746 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b4
000905746 7001_ $$0P:(DE-HGF)0$$aBenkarim, Oualid$$b5
000905746 7001_ $$0P:(DE-HGF)0$$aEichert, Nicole$$b6
000905746 7001_ $$0P:(DE-HGF)0$$aLarivière, Sara$$b7
000905746 7001_ $$0P:(DE-HGF)0$$aXu, Ting$$b8
000905746 7001_ $$0P:(DE-HGF)0$$aMisic, Bratislav$$b9
000905746 7001_ $$0P:(DE-HGF)0$$aSmallwood, Jonathan$$b10
000905746 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L$$b11
000905746 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C$$b12$$eCorresponding author
000905746 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhab149$$gVol. 31, no. 11, p. 5151 - 5164$$n11$$p5151 - 5164$$tCerebral cortex$$v31$$x1047-3211$$y2021
000905746 8564_ $$uhttps://juser.fz-juelich.de/record/905746/files/bhab149.pdf$$yOpenAccess
000905746 909CO $$ooai:juser.fz-juelich.de:905746$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b4$$kFZJ
000905746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b11$$kFZJ
000905746 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000905746 9141_ $$y2021
000905746 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000905746 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905746 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2019$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905746 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2019$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-26
000905746 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-26$$wger
000905746 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000905746 920__ $$lyes
000905746 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000905746 980__ $$ajournal
000905746 980__ $$aVDB
000905746 980__ $$aUNRESTRICTED
000905746 980__ $$aI:(DE-Juel1)INM-7-20090406
000905746 9801_ $$aFullTexts