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Differences in subcortico-cortical interactions
identified from connectome and microcircuit
models in autism
Bo-yong Park1,2✉, Seok-Jun Hong 1,3,4,5, Sofie L. Valk6,7, Casey Paquola 1, Oualid Benkarim 1,

Richard A. I. Bethlehem 8,9, Adriana Di Martino3, Michael P. Milham 3, Alessandro Gozzi10,

B. T. Thomas Yeo 11,12,13,14,15, Jonathan Smallwood 16,17 & Boris C. Bernhardt 1✉

The pathophysiology of autism has been suggested to involve a combination of both mac-

roscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-

wide manifold learning with biophysical simulation models to understand associations

between global network perturbations and microcircuit dysfunctions in autism. We studied

neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing

controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis

establishes significant differences in structural connectome organization in individuals with

autism relative to controls, with strong between-group effects in low-level somatosensory

regions and moderate effects in high-level association cortices. Computational models reveal

that the degree of macroscale anomalies is related to atypical increases of recurrent exci-

tation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory

and motor areas. Transcriptomic association analysis based on postmortem datasets iden-

tifies genes expressed in cortical and thalamic areas from childhood to young adulthood.

Finally, supervised machine learning finds that the macroscale perturbations are associated

with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our

analyses suggest that atypical subcortico-cortical interactions are associated with both

microcircuit and macroscale connectome differences in autism.

https://doi.org/10.1038/s41467-021-21732-0 OPEN

1McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada. 2 Department of Data Science,
Inha University, Incheon, South Korea. 3 Center for the Developing Brain, Child Mind Institute, New York City, NY, USA. 4 Center for Neuroscience Imaging
Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea. 5 Department of Biomedical Engineering, Sungkyunkwan University,
Suwon, South Korea. 6 Forschungszentrum, Julich, Germany. 7Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany. 8 Autism Research
Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK. 9 Brain Mapping Unit, Department of Psychiatry, University of Cambridge,
Cambridge, UK. 10 Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy. 11 Department of Electrical and
Computer Engineering, National University of Singapore, Singapore, Singapore. 12 Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic
Resonance Research (TMR), National University of Singapore, Singapore, Singapore. 13 N.1 Institute for Health & Institute for Digital Medicine (WisDM),
National University of Singapore, Singapore, Singapore. 14Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
15 Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore. 16 Department of Psychology, York
Neuroimaging Centre, University of York, York, UK. 17 Department of Psychology, Queen’s University, Kingston, ON, Canada. ✉email: bo.y.park@mcgill.ca;
boris.bernhardt@mcgill.ca

NATURE COMMUNICATIONS |         (2021) 12:2225 | https://doi.org/10.1038/s41467-021-21732-0 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21732-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21732-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21732-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21732-0&domain=pdf
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-1847-578X
http://orcid.org/0000-0002-0190-4103
http://orcid.org/0000-0002-0190-4103
http://orcid.org/0000-0002-0190-4103
http://orcid.org/0000-0002-0190-4103
http://orcid.org/0000-0002-0190-4103
http://orcid.org/0000-0003-3922-7643
http://orcid.org/0000-0003-3922-7643
http://orcid.org/0000-0003-3922-7643
http://orcid.org/0000-0003-3922-7643
http://orcid.org/0000-0003-3922-7643
http://orcid.org/0000-0002-0714-0685
http://orcid.org/0000-0002-0714-0685
http://orcid.org/0000-0002-0714-0685
http://orcid.org/0000-0002-0714-0685
http://orcid.org/0000-0002-0714-0685
http://orcid.org/0000-0003-3532-1210
http://orcid.org/0000-0003-3532-1210
http://orcid.org/0000-0003-3532-1210
http://orcid.org/0000-0003-3532-1210
http://orcid.org/0000-0003-3532-1210
http://orcid.org/0000-0002-0119-3276
http://orcid.org/0000-0002-0119-3276
http://orcid.org/0000-0002-0119-3276
http://orcid.org/0000-0002-0119-3276
http://orcid.org/0000-0002-0119-3276
http://orcid.org/0000-0002-7298-2459
http://orcid.org/0000-0002-7298-2459
http://orcid.org/0000-0002-7298-2459
http://orcid.org/0000-0002-7298-2459
http://orcid.org/0000-0002-7298-2459
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
mailto:bo.y.park@mcgill.ca
mailto:boris.bernhardt@mcgill.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Autism is one of the most common neurodevelopmental
conditions, with persistent impairments that challenge
affected individuals and their families, as well as health

care and educational systems at large1–3. Despite extensive
research efforts, the conceptualization and management of autism
continue to face significant challenges. A major difficulty in the
neurobiological understanding of autism is that the condition
appears to impact multiple scales of brain organization4–10.
Contemporary studies suggest that autism is characterized by
atypical connectivity at macroscale6–8,10–14, alongside with local
changes in cortical microcircuit function such as excitation/
inhibition imbalance4,5,9,15–17. However, an overarching frame-
work of how these microscale findings relate to autism-related
brain reorganization at macroscale remains to be established.

Neuroscience has recently gained unprecedented opportunities
to interrogate the living human brain at multiple scales in both
health and disease4,6,8,9,18, particularly through advances in
multimodal neuroimaging. A wealth of studies have examined
changes in cortical morphology12,19, as well as atypical functional
connectivity6,10,14,20–25, in individuals with autism relative to
typically developing controls. On the other hand, less is known
about macroscopic changes in structural connectivity26–29. Cap-
tializing on diffusion magnetic resonance imaging (dMRI) and
tractographic reconstructions of structural wiring30–35, previous
studies observed alterations in diffusivity parameters and con-
nectivity strength of several inter-regional fiber pathways in
autism27,28. Beyond the analysis of specific fiber tracts, macro-
scale brain organization is increasingly studied using
connectome-wide analyses. One promising approach is the
application of manifold learning techniques that project high
dimensional connectomes into low dimensional representations.
These methods can represent continuous changes in connectivity,
and can incorporate multiple, potentially overlapping, con-
nectivity gradients along the cortical surface36,37. As such, they
complement widely used parcellation approaches that place dis-
crete boundaries between regions and that average connectivity
measures within each parcel, which may potentially mix the
signals from different large-scale gradients37. In neurotypical
individuals, these techniques have gained traction to study brain
connectivity and cortical microstructure, and to represent com-
plex neural organizaton in a compact analytical space6,38–41. This
approach, however, remains underexplored in the assessment of
atypical structural wiring in autism.

In addition to providing a synoptic perspective on macroscale
structural wiring, features of structural connectivity can also be
used to predict functional dynamics to understand how
the structural organization of the brain determines its func-
tion18,42–45. One class of methods simulates whole-brain func-
tional dynamics via a network of anatomically connected
neural masses43–45. In contrast to approaches that assess
structure–function coupling statistically46–49, these models are
governed by biophysically plausible parameters that are anchored
in established models of neural circuit function18,42. A recent
study in healthy young adults established that these models
robustly simulate intrinsic functional networks from structural
connectivity data, and the study incorporated model inversion
approaches to estimate regionally varying microcircuit para-
meters, specifically recurrent excitation/inhibition and external
subcortical input into cortical microcircuits18. Applying these
models to autism, therefore, may provide the opportunity to
understand how microcircuit-level features correlate with mac-
roscale connectivity patterns.

Here, we show macro- and microscale perturbations in indi-
viduals with autism relative to typically developing controls, and
examine their relationship. We generate low dimensional repre-
sentations of structural connectomes by applying manifold

learning techniques to dMRI data41,50, and use these to build a
macroscale account of topographical structural divergence in
autism. We also apply biophysical computational simulations to
infer microcircuit-level imbalances at a regional level, specifically
recurrent excitation/inhibition and excitatory subcortical input18.
We embed our results in a neurobiological and neurodevelop-
mental context by spatially correlating the macroscale patterns
with postmortem maps of gene expression data51–53. Finally, we
establish associations between our macroscale findings and aut-
ism symptom severity using supervised machine learning with
five-fold nested cross validation54–57.

Results
Our sample consisted of 47 individuals with autism and 37
neurotypical controls obtained from the two independent sites
(Supplementary Table 1 for demographic information) from the
Autism Brain Imaging Data Exchange initiative (ABIDE-II;
https://fcon_1000.projects.nitrc.org/indi/abide) 58,59. See Methods
for details on participant selection, image processing, manifold
generation, computational modeling, transcriptomic analysis, and
symptom prediction.

Large-scale structural connectome manifolds. We estimated
a cortex-wide structural connectome manifold using nonlinear
diffusion map embedding (https://github.com/MICA-MNI/
BrainSpace)41. The template manifold was estimated from an
unbiased and group representative structural connectome60 to
which individual manifolds were aligned (see Methods)41,61. The
three dimensions (henceforth, M1, M2, and M3) reflect the
principle axes of variation in structural connectivity accounting
for approximately 50.6% of the total variance (Fig. 1a). Each
cortical region can be described in terms of its position along these
three axes. The individual dimensions extended from somato-
motor to visual areas (M1), differentiated lateral parietal/motor
cortex from prefrontal cortex (M2), and showed a lateral to medial
cortical axis (M3; Fig. 1b).

Connectome manifold distortions in autism. Cortex-wide
multivariate analyses compared connectome manifolds spanned
by M1–M3 between individuals with autism and controls, using a
model that additionally controlled for age, sex, and site. Relative to
controls, we observed macroscale distortions in autism in multiple
networks, with primary effects in sensory and somatomotor as
well as heteromodal association cortices (false discovery rate
(FDR) < 0.05; Fig. 1c). Stratifying effects according to a seminal
model of neural organization that contains four cortical hierarchy
levels (1: idiotypic; 2: unimodal association; 3: heteromodal asso-
ciation; 4: paralimbic; Supplementary Table 2)62, we identified
peak effects in idiotypic areas followed by unimodal and hetero-
modal association cortices. Similarly, when analyzing effects with
respect to seven intrinsic functional communities63, the strongest
between-group differences were observed in somatomotor net-
works followed by higher-order systems, such as the default-mode
network (Supplementary Fig. 1a). To address the lateralization of
findings, we stratified the between-group effects according to
cortical hierarchical levels62 for left and right hemispheres sepa-
rately (Supplementary Fig. 1b). We found 49% stronger effects in
the right compared to the left idiotypic networks and 29% stronger
effects in left versus right for heteromodal association cortices. A
comparable effect was seen when stratifying findings across
intrinsic functional communities63.

When we summarized the multivariate manifolds into a single
scalar that represents manifold expansion and contraction64,65,
we found evident contractions in somatomotor and posterior
cingulate cortices, and expansions in heteromodal association
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cortex in individuals with autism relative to controls (Supple-
mentary Fig. 1c), and these patterns were similar across both sites
(Supplementary Fig. 1d). To ensure that our results were not
related to spurious features, we assessed the degree of head
motion of each individual during the dMRI scan based on
framewise displacement (FD), and found that mean FD did not
differ between autism and controls (p= 0.34) (Supplementary
Fig. 2a). Notably, between-group differences in structural
manifolds were comparable when controlling for mean FD,
indicating that head motion did not considerably affect patterns
of structural connectome perturbations in autism (Supplementary
Fig. 2b). Repeating analyses separately in children (age < 18) and
adults (age ≥ 18), effects in adults with autism were highest in
higher-order frontoparietal/paralimbic areas while children with
autism displayed most substantial anomalies in somatomotor/
idiotypic regions (Supplementary Fig. 3), similar to age-stratified
results in a previous functional connectome study6.

Prior MRI research has indicated atypical cortical morphology
in autism, showing anomalies in both cortical thickness and
folding relative to controls12,19, motivating an assessment of
morphological effects on manifold findings. Correlating manifold
distortions with cortical thickness and folding variations, we
observed only marginal relations (p= 0.1; Supplementary Fig. 4a).
In addition, connectome manifold differences between autism
and controls were still measurable when controlling for cortical
thickness and curvature in the same model, indicating that

structural connectome perturbations occurred above and beyond
any potential variations in cortical morphology (Supplementary
Fig. 4b).

We also compared each manifold dimension between indivi-
duals with autism and controls. We found that the first dimension
showed significant effects in lateral temporal regions and the
second and third dimensions showed significant effects in medial
temporal and lateral somatosensory areas (Supplementary Fig. 5).
Patterns were similar to the multivariate findings, but effects were
stronger when considering all dimensions simultaneously.

To explore specific connections that potentially contribute to
the above manifold distortions, we compared the streamline cross-
section between individuals with autism and controls. We could
observe a mix of connectivity increases and decreases in autism,
affecting multiple networks, including those in which we observed
manifold anomalies (Supplementary Fig. 6a, b). Notably, the
lengths of fiber tracts showing decreases were considerably longer
(20.90mm) compared to fiber tracts showing increases (9.37mm)
(p < 0.001; Supplementary Fig. 6c). To further assess subcortico-
cortical and cerebello-cortical connectivity, we projected the
streamline strength of these regions to cortical targets in each
individual to the manifold space (see Methods). For each
subcortical and cerebellar structure, multivariate analysis com-
pared weighted manifolds (wM) spanned by wM1–wM3 between
individuals with autism and controls while controlling for age, sex,
and site. After FDR-correction, we found significant between-
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Fig. 1 Structural connectome manifolds. a Fiber tracts generated from dMRI (left), a cortex-wide structural connectome (middle left), and a scree plot
describing connectome variance after identifying principal eigenvectors (middle right). The structural connectome reordered according to M1 is shown for
better visualization (right). b Manifolds estimated from the structural connectome (left). Three dimensions (M1, M2, and M3) explained >50% of variance
and corresponded to the clearest eigengap. Each data point (i.e., brain region) was represented in the three-dimensional manifold space with different
colors (middle), and was mapped onto the brain surface for visualization (right). c The t-statistics of the identified regions that showed significant between-
group differences in these dimensions between individuals with autism and controls (left). Findings have been corrected for multiple comparisons at false
discovery rate (FDR) < 0.05. Stratification of between-group difference effects along cortical hierarchical levels (middle)62 is presented in the radar plot
(right). Source data are provided as a Source Data file.
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group differences for the thalamus (FDR= 0.03), caudate (FDR=
0.04), and cerebellum (FDR= 0.03), indicating that the low
dimensional representation of subcortico-cortical connectivity
patters of these regions changed in autism (Supplementary Fig. 7).

Microcircuit parameters from biophysical network modeling.
Biophysical computational simulations18 complemented our mac-
roscale findings by modeling atypical microcircuit-level functional
dynamics. Harnessing a relaxed mean-field model18, we simulated
dynamics of functional signals through a set of simplified nonlinear
stochastic differential equations by linking ensembles of local neural
masses (i.e., theoretical cell population models for excitatory neu-
rons, which reciprocally inhibit each other; Fig. 2a) with diffusion-

derived structural connectivity. Notably, the model iteratively tunes
its parameters to simulate functional connectivity patterns that are
maximally similar compared to empirical data, which also resulted
in an optimal set of biophysical parameters (i.e., recurrent excita-
tion/inhibition and excitatory subcortical/external input; see
Methods). We ran the mean-field model18 with five-fold cross
validation to first evaluate the capacity of the structural connectome
to simulate intrinsic functional dynamics, and then estimated
regional microcircuit parameters. The optimal model predicted
functional connectivity (product-moment correlation coefficient r
~0.5 for training and r ~0.26 for test data) nominally higher than
the corresponding baseline correlations between structural and
functional connectivity (r ~0.25 for training and r ~0.23 for test
data) (Figs. 2a and S8a). We assessed improvements in predicting
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Fig. 2 Microcircuit parameters and associations with macroscale findings. a A relaxed mean-field model18 was used to predict functional connectivity
(FC) from structural connectivity (SC) and to estimate region-specific microcircuit parameters, i.e., recurrent excitation/inhibition Wi and subcortical/
external input Ii (left). A global coupling constant G is also estimated. Linear correlations between FC and SC, and empirical and simulated FC are shown
(right). Black lines indicate mean correlation and gray lines represent 95% confidence interval across cross validation. b Microcircuit parameters of
controls (left) and differences of the parameters between individuals with autism and controls (middle). Linear correlations between t-statistics derived
from the multivariate group comparison and the regional changes in microcircuit parameters are reported, constrained to regions showing significant
between-group differences in Fig. 1c (right). Source data are provided as a Source Data file.
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functional connectivity with the biophysical model compared to a
baseline model based on structural connectivity with three different
approaches. First, we observed that the model-driven correlations
(i.e., between empirical and simulated functional connectivity) were
higher than baseline correlations (i.e., between structural and
empirical functional connectivity) in all 5/5 folds for both training
and test data. Second, we performed 1000 permutation tests, in
which we randomly assigned elements of structural and simulated
functional connectivity (see Methods). We found that the empirical
and simulated functional connectivity showed significantly higher
correlation compared to structural and empirical functional con-
nectivity (p < 0.001 for both training and test data). Finally, we ran
1000 bootstraps using dimensionality reduced structural and
functional connectomes based on functional communities63 (see
Methods). The correlation coefficients between empirical and
simulated functional connectivity exceeded corresponding baseline
correlations between structural and functional connectivity (Sup-
plementary Fig. 8b; p < 0.001 for both training and test). Together,
these findings suggest that the biophysical model provided
improvements in predicting functional connectivity relative to using
baseline structural connectivity. Estimated microcircuit parameters
(Fig. 2b) were relatively stable across cross-validations in terms of
the variance, with a mean ± SD of the parameter values across the
five folds of 0.530 ± 0.004 for recurrent excitation/inhibition and
0.325 ± 0.001 for subcortical/external input in controls, and 0.528 ±
0.006 for recurrent excitation/inhibition and 0.325 ± 0.001 for
subcortical/external input in autism. The product-moment corre-
lations of the microcircuit parameters across the cross-validation
folds were mean ± SD of 0.79 ± 0.04 for recurrent excitation/inhi-
bition and 0.91 ± 0.03 for subcortical/external input for controls,
and 0.74 ± 0.05 and 0.89 ± 0.03 for individuals with autism, indi-
cating robustness. To confirm stability, we ran a bootstrap-based
evaluation of the relaxed mean-field model based on an intrinsic
functional community partitioning63 (see Methods). The mean ±
SD of the parameters across 1000 bootstraps in autism relative to
controls were consistent (Supplementary Fig. 8c). Between-group
differences in microcircuit parameters between autism and controls
were assessed using 1000 permutation tests. We found increased
recurrent excitation/inhibition in visual (p= 0.02) and limbic net-
works (p < 0.001) in autism; considering subcortical/external inputs,
we observed decreases in dorsal attention (p < 0.001), frontoparietal
(p= 0.02), and default-mode networks (p= 0.01), while values
in sensorimotor networks increased (p < 0.001) (Supplementary
Fig. 8c). Estimated microcircuit parameters were largely consistent
across different matrix thresholds (Supplementary Fig. 9). Notably,
between-group differences in parameters did not show significant
differences across different thresholding procedures, suggesting
sensitivity. Correlating these regional changes in microcircuit pat-
terns (see Fig. 2b) with multivariate macroscale manifold anomalies
(see Fig. 1c), we observed a significant correlation between the
overall degree of manifold distortion and increases in excitation/
inhibition (r= 0.26, p < 0.001; determined using nonparametric
spin tests that account for spatial autocorrelation41,66), as well as
increases in excitatory subcortical/external input (r= 0.20, p= 0.02)
(Fig. 2b).

Transcriptomic association analysis. We next performed tran-
scriptomic association analysis and developmental and disease
enrichment analyses to explore neurobiological underpinnings of
the macroscale manifold findings in autism identified in our ana-
lysis (Fig. 3a). Specifically, we correlated the multivariate change
pattern with postmortem gene expression data of six donors
from the Allen Institute for Brain Sciences (AIBS)67,68. For
significant gene lists after multiple comparisons correction (FDR <

0.05), we repeated the transcriptomic association analysis with
randomly rotated maps of the multivariate change pattern for 100
times, to ensure that genes were not selected by chance. Among the
significantly associated genes, we selected only those that were
consistently expressed across donors (r > 0.5)69 (Supplementary
Data 1). We fed those into a developmental gene expression ana-
lysis, which highlights developmental time windows across brain
regions in which these genes are expressed (see Methods)53. This
analysis highlighted associations between the multivariate pattern of
autism-related structural manifold distortions and genes expressed
in early childhood and adolescence, as well as early infancy and
young adulthood, in thalamic and cortical areas (Fig. 3b). While
these genes were also expressed in the cerebellum in early devel-
opment and in the amygdala in later developmental stages, they
were not significantly expressed in the striatum nor hippocampus.
We furthermore validated the transcriptomic association results
using the Genotype-Tissue Expression (GTEx) database (https://
www.gtexportal.org/home), and we found that the genes highly
associated with multivariate manifold changes were strongly
expressed in cortical areas, replicating our results (Supplementary
Fig. 10a). In addition, we performed disease enrichment analysis to
associate the significance of the gene expressions with the log fold-
changes of autism, schizophrenia, and bipolar disorder (see Meth-
ods)70. Notably, autism showed the most marked associations (T=
−34.89 and p < 0.001) followed by schizophrenia (T=−8.93 and
p < 0.001) and bipolar disorder (T= 5.34 and p < 0.001) (Fig. 3c).

We further compared the genes associated with multivariate
connectome manifold changes with distinct cell types proposed in
prior work71,72. For each cell type, we calculated the overlap ratio,
which indicates how many genes expressed for manifold changes
are included in each cell-type-specific genes (Supplementary
Fig. 10b). Cell-type-specific expression analysis indicates several
cell types showing a similar expression profile with positive overlap
ratio. Highest and marginally significant overlap was observed for
the excitatory neurons (mean ± SD across 13 cell subtypes= 22.36
± 4.16%; FDR= 0.1; see Methods) relative to others (endothelial
cells: 14.29%; astrocytes: 11.11%; inhibitory neurons: mean ± SD
across 11 cell subtypes= 7.47 ± 4.21%; pericytes, oligodendrocytes
and their precursor cells, microglia: 0%).

Associations to symptom severity. We used supervised machine
learning to predict symptom severity scores based on the Autism
Diagnostic Observation Schedule (ADOS—social cognition, com-
munication, and repeated behavior/interest subscores and total
score)73 using structural connectome manifold information. Speci-
fically, we employed elastic net regularization74 with five-fold nested
cross validation (see Methods)54–57. The procedure was repeated
100 times with different training and test data compositions to avoid
subject selection bias. Using a regularization parameter of 0.6,
manifolds spanned by M1–M3 significantly predicted total ADOS
score (mean ± SD r= 0.47 ± 0.06; mean ± SD mean absolute error
(MAE)= 2.07 ± 0.12; permutation test p= 0.01) as well as subscores
for social cognition (mean ± SD r= 0.43 ± 0.07; MAE= 1.79 ± 0.09;
p= 0.01), communication (mean ± SD r= 0.57 ± 0.03; MAE= 0.89
± 0.03; p < 0.001), and marginally for repeated behavior/interest
(mean ± SD r= 0.33 ± 0.09; MAE= 0.89 ± 0.05; p= 0.09) (Fig. 4).
Features were selected in premotor, lateral prefrontal and orbito-
frontal, lateral and medial temporal, lateral parietal, and posterior
cingulate regions. (for results based on other regularization para-
meters, see Supplementary Table 3).

Performing the same analyses using three-fold nested cross
validation, we found largely prediction results (Supplementary
Table 4). Indeed, the regularization parameter of 0.7 and 0.8 showed
good performance for predicting ADOS scores, and features were
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primarily selected in lateral and medial prefrontal, lateral parietal,
and lateral temporal regions. We repeated symptom severity
prediction for each site separately (Supplementary Table 5 and 6).
Although each site contains small number of subjects (n= 20 for
New York University Langone Medical Center (NYU), n= 18 for
Trinity College Dublin (TCD)), we found consistent prediction
results with similar optimal regularization parameters. Lastly, we
performed symptom severity prediction using the edge values of the
structural connectivity matrix (i.e., streamline cross-section;
Supplementary Table 7). Similar to the results from connectome

manifolds, regularization parameter of 0.6 and 0.7 showed good
performance for predicting ADOS scores, where the selected
connections were primarily found in medial prefrontal, lateral
parietal, lateral temporal, posterior cingulate, and sensorimotor
regions.

Discussion
Understanding autism pathophysiology remains challenging, in
part, because of the difficulties in consolidating neuroimaging
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findings of connectome miswiring with molecular and neuro-
physiological data that probe cortical microcircuits. By combining
manifold learning and computational models of brain dynamics,
our study established how macroscale structural connectome
alterations in autism relate to microcircuit dysfunction. We
identified macroscale changes in cortical networks in autism, with
peak differences in somatosensory as well as heteromodal asso-
ciation cortex, particularly within the posterior core of the
default-mode network. Findings were broadly similar when
controlling for head motion and morphological changes, such as
cortical thickness and curvature, and were consistent across dif-
ferent study sites. Using biophysical parameters derived from a
large-scale computational model, we found that these whole-
brain findings were correlated to alterations in subcortical drive
into cortical microcircuits, together with alterations in excitation/
inhibition. An association with subcortical structures, particularly
the thalamus, was supported by complementary analyses of
subcortical connectivity and postmortem transcriptomic asso-
ciation and developmental as well as disease enrichment analyses.
These analyses highlighted that the affected regions harbor genes
expressed in cortical and thalamic areas in early childhood and
adolescence, as well as early infancy and young adulthood. Our
findings, therefore, offer a perspective on the relation between
subcortico-cortical interactions at macroscale and microcircuit
reorganization in autism.

The current work utilized manifold learning to compress high
dimensional structural connectomes into a series of principal axes
that describe spatial trends in connectivity changes across the cor-
tical mantle in a data-driven manner. By offering a cortex-wide
analysis of structural connectivity, our work extends prior diffusion
MRI studies in autism that have shown atypical microstructure in

fiber tracts interconnecting higher-order brain systems13,29,75–77

and work focusing on fibers mediating connectivity between
sensorimotor and subcortical systems7,78. Our findings are also
consistent with prior graph-theoretical studies of structural con-
nectome data in autism that highlight alterations in global as well as
local efficiency across both lower-level and higher-order cortical
systems29,78–82. In parallel, our findings provide insights on
potential structural substrates underlying a wide range of functional
network anomalies reported in autism6,83,84. Functional findings are
somewhat heterogeneous across studies and analytical approaches;
yet prior studies have converged on an overall pattern characterized
by cortico-cortical functional connectivity reductions, often affect-
ing heteromodal association cortices, such as the default-mode
network, together with patches of connectivity increases, particu-
larly between sensorimotor cortices and subcortical nodes such as
the thalamus7,11,85,86. By highlighting both association cortices,
such as the default-mode network, as well as idiotypic and soma-
tosensory systems, our work provides a potential consolidation of
these distributed effects in a space governed by structural wiring.
Notably, connectome manifold distortions in autism showed more
marked effects in the right hemisphere for idiotypic areas, and more
marked effects in the left hemisphere in heteromodal areas. Several
prior studies suggested asymmetric findings in autism at the level of
cortical morphology as well as functional organization87–93. Our
results may contribute to these prior findings by suggesting a dif-
ferential susceptibility for structural reorganization in autism for left
and right hemispheres for unimodal versus heteromodal regions,
respectively.

Histological studies have suggested several potential cellular
substrates associated with connectome miswiring of autism,
including altered cortical lamination94–97 and columnar
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layout98,99, together with atypical neuronal migration that can
result in cortical blurring95,100 and changes in spine density of
cortical projection neurons101,102. Such cellular changes may
impact the functional organization of cortical microcircuits in
autism, a possibility supported by molecular studies in ani-
mals4,22–25,103,104. These findings collectively give rise to the
notion that cortical areas may show imbalances in excitation and
inhibition in autism4,9,16,22,105,106. Such imbalances have been
related to anomalies in cortical neurotransmitter systems107–110

and atypical subcortico-cortical interactions, where subcortical
structures such as thalamus are thought to serve as mod-
ulators7,11,24,85,86,111. Our study provides further support for the
role of perturbations in cortical microcircuit function in autism
from a network perspective, by leveraging a biophysically plau-
sible computational model of brain function, which tunes para-
meters to optimize the link between structural and
functional connectomes18. In recent work18, these models were
inverted to infer regional variations in cortical microcircuit
parameters. Studying a cohort of healthy adults from the human
connectome project dataset, the study mapped cortex-wide gra-
dients of recurrent excitation/inhibition and of excitatory sub-
cortical input, with a topography mirroring prior work showing
gradients in laminar differentiation and synaptic organization in
nonhuman primates62,112. In the neurotypical individuals stu-
died here, we found spatial trends in excitation/inhibition and
subcortical input that resembled those reported in the recent
study, showing increased subcortical input but lower excitation/
inhibition in association cortices, while sensorimotor areas
showed higher excitation/inhibition. This correspondence is an
important consideration given that the retrospective data
aggregated and shared via ABIDE is not at par in terms of image
quality and data volume with the human connectome project
data on which these models were originally presented18,113.
Importantly, comparing microcircuit maps between individuals
with autism and neurotypical controls suggested a relatively
diffuse pattern of local microcircuit parameter changes, char-
acterized by both reductions as well as increases. In healthy
individuals, inter-regional variations in recurrent excitation/
inhibition and subcortical/external input follow sensory-fugal
hierarchical gradients, previously established with resting-state
functional connectivity mapping and analysis of myelin-sensitive
MRI contrasts18. Our computational modeling findings, showing
atypical microcircuit parameters in somatosensory but also
higher-order default-mode networks in individuals with autism
relative to controls, suggest a broad microcircuit imbalance in
autism that is not limited to a specific network. Our results also
indicate that these microcircuit imbalances impact multiple
stages of the cortical hierarchy, a pattern consistent with prior
resting-state fMRI analysis, and with the broad phenotypical
correlates of autism that encompass both sensory deficits as well
as atypical features of higher-order cognition6,8,16,114. In our
work, directly correlating connectome-wide manifold distortions
with microcircuit parameters indicated associations with
increased recurrent excitation/inhibition and excitatory sub-
cortical drive, a finding especially marked in idiotypic areas with
strong laminar differentiation. Findings were robust after con-
trolling for spatial autocorrelations using nonparametric spin
tests. Mapping connectivity alterations at the edge-level revealed
widespread alterations in structural connectivity between indi-
viduals with autism and controls, supporting the sensitivity of
these analyses to map autism-related network alterations. On the
other hand, the microcircuit modeling approach harnessed both
structural and functional connectivity information synergisti-
cally, making a direct comparison of the relative sensitivity of
edge-level comparison vis a vis the modeling approach difficult.

While the former is optimized to detect differences in structural
connectivity between groups, the latter reveals additional insights
into structure–function coupling and also provides a useful
bridge between perturbed macroscale connectivity, on the one
hand, and microcircuit dysfunction, on the other.

Spatial association analysis between macroscale manifold dis-
tortions and postmortem gene expression maps from the Allen
Institute for Brain Sciences (AIBS) pointed to potential neuro-
biological substrates of our manifold level findings. Recent studies
in healthy brain organization115,116, development39,65, and dis-
ease117,118 have shown how such analyses can help to understand
the relationship between macroscopic neuroimaging phenotypes
and spatial variations at the molecular scale119. In a prior study,
similar approaches were used to identify genetic factors whose
expression correlated to maps of cortical morphological varia-
tions in autism, and pointed to transcriptionally downregulated
genes implicated in autism120. In our study, similarly, develop-
mental and disease enrichment analyses exhibited gene sets that
were expressed in the cortex and thalamus during childhood and
adolescence in autism by associating gene expression patterns
with our macroscale findings, suggesting potential interactions
between sensory-related subcortical areas and idiotypic/default-
mode cortices. The genes that went into the enrichment analysis
had strong spatial correlations between reference genes provided
by AIBS and manifold findings in the cortical mask, and corre-
lations are thus dependent on cortical differentiation only.
However, these genes are not necessarily localized in the cortical
areas alone, as the AIBS dataset covers the whole brain69,121.
Indeed, our results indicated that the cortical areas showing
manifold distortions host genes that are also significantly co-
expressed in the thalamus. The thalamus relays afferent sensory
inputs to the cortex and modulates efferent motor signals. Being a
critical hub node in integrative cortico-cortical connectivity in
both health and disease122,123, the thalamus is furthermore
recognized to regulate overall levels of cortical excitability7,11. In
other words, atypical excitatory input from the thalamus would
likely lead to altered perceptual input and may thus contribute to
sensory abnormalities in autism11. Indeed, it has been shown that
abnormal functional connectivity between primary sensory cor-
tices and subcortical regions affects the balance between sensory
information processing and top-down feedback from higher-
order cortices124. The connectivity between thalamus and cor-
tical networks extensively modulates brain-wide communication,
which means abnormal thalamocortical connectivity likely affects
multiple functional processes relevant to autism, including socio-
cognitive impairments but also sensory anomalies7,11,24.

Our multilevel analyses were carried out in a spa-
tially unconstrained manner, yet findings pointed to a co-
existence of connectional and microcircuit perturbations in
heteromodal association regions (particularly posterior default-
mode nodes) and even more strongly to idiotypic/somatomotor
cortices. In addition to widely recognized impairments in com-
munication and socio-cognitive functions, individuals with aut-
ism show obvious deficits in sensorimotor behaviors16,114 and
these are subsumed under the “repetitive behaviors and interests”
syndrome cluster—a core criterion for autism diagnosis. More
broadly, autism is increasingly thought to be associated with early
sensory anomalies, also formulated in the “sensory-first”
hypothesis16, where atypical formation and maturation of sensory
processing circuits in early development may have cascading
effects on the development of higher-order networks, which
generally mature later and are mediating more integrative and
socio-communicative functions6,8. Stratifying our cohort into
children and adults, we observed more marked sensorimotor
network perturbations in the former, while anomalies in
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heteromodal association and paralimbic areas were only visible in
adults with autism. Similar to recent work from our group that
assessed functional hierarchy in autism6, structural manifold
features used in this study were useful in predicting both
impairments in lower-level repetitive behavior symptoms as well
as higher-order social and cognitive deficits.

Our study provides a potential perspective to consolidate
multiple scales of autism pathophysiology. Harnessing advanced
connectomics, machine learning, and computational modeling,
we could show macroscale structural connectome perturbations
in somatosensory/idiotypic and default-mode/heteromodal asso-
ciation areas in autism, which are associated with behavioral
symptoms at an individual subject level. These macroscale dis-
tortions were also found to relate to cortical microcircuit function
in individuals with autism in an in silico model of brain function,
in our cohort mostly visible as an increase in excitatory sub-
cortical drive. Despite assessing cross-site variability, imple-
menting bootstrap-based assessment, and running cross-
validations where appropriate, our sample size was modest
which potentially limits the generalizability of our results. Of
note, although we leveraged ABIDE, the currently largest neu-
roimaging database in autism that is openly accessible, the
restriction to individuals who had dMRI, rs-fMRI, and structural
MRI data of adequate quality reduced the available sample size.
Prior conceptual and simulation findings suggested that a small
sample size may yields high variance in predictive errors and
emphasized the value of confirming findings in independent and
large-scale datasets where possible, not to underestimate predic-
tion error125. This can benefit from the aggregation and sharing
of more open datasets, ultimately strengthening the general-
izability of diagnostic biomarkers125–127. A further avenue may
also involve the study of transdiagnostic cohorts, which would
not only provide additional consolidation of our findings, but also
help to evaluate how specific this pattern is to autism, and to
further explore inter-individual heterogeneity within the condi-
tion128–131. Yet, these findings overall provide consistent support
that atypical subcortico-cortical interactions, likely between tha-
lamic and sensorimotor areas, contribute to large-scale network
anomalies in autism and may suggest that connectivity anomalies
of sensorimotor networks that mature early may cascade into
overall disorganization of cortico-cortical systems in autism.

Methods
Participants. We studied imaging and phenotypic data of 47 individuals with
autism and 37 typically developing controls from the Autism Brain Imaging Data
Exchange initiative (ABIDE-II; https://fcon_1000.projects.nitrc.org/indi/abide) 58,59.
Participants were taken from two independent sites: (1) New York University
Langone Medical Center (NYU) and (2) Trinity College Dublin (TCD), which were
the only sites that included children and adults with autism and neurotypical
controls, with ≥10 individuals per group, and who had full MRI data (i.e., structural,
functional, and diffusion) available. These 84 participants were selected from a total
of 120 participants through the following inclusion criteria: (i) complete multimodal
imaging data, i.e., T1-weighted, resting-state functional MRI (rs-fMRI), and dMRI,
(ii) acceptable cortical surface extraction, (iii) low head motion in the rs-fMRI time
series, i.e., less than 0.3 mm framewise displacement. Individuals with autism were
diagnosed by an in-person interview with clinical experts and gold standard diag-
nostics of Autism Diagnostic Observation Schedule (ADOS)73 and/or Autism
Diagnostic Interview-Revised (ADI-R)132. Neurotypical controls did not have any
history of mental disorders. For all groups, participants who had genetic disorders
associated with autism (i.e., Fragile X), psychological disorders comorbid with
autism, contraindications to MRI scanning, and pregnant were excluded. Detailed
demographic information of the participants is reported in Supplementary Table 1.
The ABIDE data collections were performed in accordance with local Institutional
Review Board guidelines. In accordance with HIPAA guidelines and 1000 Func-
tional Connectomes Project/INDI protocols, all ABIDE datasets have been fully
anonymized, with no protected health information included.

MRI acquisition. At the NYU site, multimodal imaging data were acquired using
3 T Siemens Allegra. T1-weithed data were obtained using a 3D magnetization

prepared rapid acquisition gradient echo (MPRAGE) sequence (repetition time
(TR)= 2,530 ms; echo time (TE)= 3.25 ms; inversion time (TI)= 1100 ms; flip
angle= 7°; matrix= 256 × 192; and voxel size= 1.3 × 1.0 × 1.3 mm3). The rs-fMRI
data were acquired using a 2D echo planar imaging (EPI) sequence (TR= 2000 ms;
TE= 15 ms; flip angle= 90°; matrix= 80 × 80; number of volumes= 180; and
voxel size= 3.0 × 3.0 × 4.0 mm3). Finally, dMRI data were obtained using a 2D spin
echo EPI (SE-EPI) sequence (TR= 5200 ms; TE= 78 ms; matrix= 64 × 64; voxel
size= 3 mm3 isotropic; 64 directions; b-value= 1000 s/mm2; and 1 b0 image).

At the TCD site, imaging data were acquired using 3 T Philips Achieva. T1-
weighted MRI were acquired using a 3D MPRAGE (TR= 8400 ms; TE= 3.90 ms;
TI= 1,150 ms; flip angle= 8°; matrix= 256 × 256; voxel size= 0.9 mm3 isotropic).
The rs-fMRI data were aquired using a 2D EPI (TR= 2000 ms; TE= 27 ms; flip
angle= 90°; matrix= 80 × 80; number of volumes= 210; and voxel size= 3.0 ×
3.0 × 3.2 mm3). Finally, dMRI data were acquired using a 2D SE-EPI (TR= 20,244
ms; TE= 79 ms; matrix= 124 × 124; voxel size= 1.94 × 1.94 × 2 mm3; 61
directions; b-value= 1500 s/mm2; and 1 b0 image).

Data preprocessing. T1-weighted data were processed using FreeSurfer133–138,
which includes gradient nonuniformity correction, skull stripping, intensity nor-
malization, and tissue segmentation. White and pial surfaces were generated
through triangular surface tessellation, topology correction, inflation, and spherical
registration to fsaverage. We obtained preprocessed rs-fMRI data from the ABIDE
database (http://preprocessed-connectomes-project.org/abide/), where rs-fMRI data
were processed via C-PAC (https://fcp-indi.github.io)139, including slice timing and
head motion correction, skull stripping, and intensity normalization. Nuisance
variables of head motion, average white matter and cerebrospinal fluid signal, and
linear/quadratic trends were removed using CompCor140. Bandpass filtering
between 0.01 and 0.1 Hz was applied, and rs-fMRI data were co-registered to T1-
weighted data in MNI152 space with boundary-based rigid-body and nonlinear
transformations. The rs-fMRI data were mapped to subject-specific midthickness
surfaces and resampled to Conte69. Finally, surface-based spatial smoothing with a
full-width-at-half-maximum of 5mm was applied. The dMRI data was processed
using MRtrix30,31, including correction for susceptibility distortions, head motion,
and eddy currents. Quality control involved visual inspection of T1-weighted data,
and cases with faulty cortical segmentation were excluded. Data with a framewise
displacement of rs-fMRI data >0.3 mm were also excluded141,142.

Structural connectome manifold identification. Structural connectomes were
generated from preprocessed dMRI data using MRtrix30,31. Anatomical con-
strained tractography was performed using different tissue types derived from the
T1-weighted image, including cortical and subcortical grey matter, white matter,
and cerebrospinal fluid33. The T1-weighted was registered to the dMRI data with
boundary-based registration, and the transformation was applied to different tissue
types to register them onto the native dMRI space. The multishell and multitissue
response functions were estimated35 and constrained spherical deconvolution and
intensity normalization were performed34. Seeding from all white matter voxels,
the tractogram was generated based on a probabilistic approach30,31,143 with 40
million streamlines, with a maximum tract length of 250 and a fractional aniso-
tropy cutoff of 0.06. Subsequently, spherical deconvolution informed filtering of
tractograms (SIFT2) was applied to optimize an appropriate cross-section multi-
plier for each streamline32, and the whole-brain streamlines weighted by the cross-
section multipliers are reconstructed. The structural connectome was built by
mapping the reconstructed cross-section streamlines onto the Schaefer atlas with
200 parcels144 then log-transformed145.

Cortex-wide structural connectome manifolds were identified using BrainSpace
(https://github.com/MICA-MNI/BrainSpace)41. First, a template manifold was
estimated using a group representative structural connectome, defined using a
distance-dependent thresholding that preserves long-range connections60. The
group representative structural connectome was constructed using both autism and
control data. A cosine similarity matrix, capturing similarity of connections among
different brain regions, was constructed without thresholding the structural
connectome, and manifolds were estimated via diffusion map embedding (Fig. 1a,
b). Diffusion map embedding is robust to noise and computationally efficient
compared to other nonlinear manifold learning techniques146,147. It is controlled
by two parameters α and t, where α controls the influence of the density of
sampling points on the manifold (α= 0, maximal influence; α= 1, no influence)
and t controls the scale of eigenvalues of the diffusion operator. We set α= 0.5 and
t= 0 to retain the global relations between data points in the embedded
space6,40,41,50,148. In this new manifold, interconnected brain regions are closely
located and regions with weak interconnectivity located farther apart. After
generating the template manifold, individual-level manifolds were then estimated
and aligned to the template manifold via Procrustes alignment41,61.

Between-group differences in structural manifolds. After controlling for age,
sex, and site, multivariate analyses compared individuals with autism and controls
in the manifold spanned by the first three structural eigenvectors, which explained
more than 50% in structural connectome variance and corresponded to the clearest
elbow in the scree plot. We repeated the multivariate analyses with permutation
tests by randomly assigning autism and control groups 1000 times. The null
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distribution was constructed, and the p-value was calculated by dividing the
number of permuted t-statistic values (i.e., Hotelling’s T) larger than real t-statistic
by the number of permutations. The p-values were FDR-corrected for multiple
comparisons149. Summary statistics were calculated based on an atlas of laminar
differentiation and cortical hierarchy (Fig. 1c)62 and a widely used community
parcellation (Supplementary Fig. 1a)63. We furthermore stratified between-group
effects for each hemisphere according to cortical hierarchical levels62 and func-
tional communities63 (Supplementary Fig. 1b). To simplify the multivariate
manifold representations into a single scalar, we quantified manifold eccentricity as
the Euclidean distance between the center of template manifold and all data points
(i.e., brain regions) in the manifold space for each individual after alignment
(Supplementary Fig. 1c)64,65. Group averaged manifold eccentricity was compared
between individuals with autism and controls to assess the manifold-affected brain
regions. It is increasingly recognized that individuals with autism show atypical
subcortico-cortical, as well as cerebello-cortical connectivity150–154. To assess
structural connectivity between subcortical/cerebellar seed regions and cortical
targets in autism and controls, we first segmented subcortical regions from T1-
weighted data155 and defined the cerebellum156. For each individual, we projected
the streamline strength to cortical manifold space by weighting the cortical
manifolds with the streamline cross-section of the connection between each sub-
cortical/cerebellar region and cortical parcels to construct weighted manifolds
(wM). After controlling for age, sex, and site, we performed 1000 permutation tests
with multivariate analyses to compare these dimensions between autism and
controls (Supplementary Fig. 7), and FDR-corrected for multiple comparisons149.

Microscale neural dynamic modeling. Large-scale biophysical circuit modeling
was conducted to simulate coordinated neuronal activities across the whole brain
based on long-range structural connectome information and to estimate regional
cellular level parameters of neuronal populations. Specifically, we harnessed a
relaxed mean-field model that captures the link between cortical functional
dynamics and structural connectivity derived from dMRI, and its modulation
through region-specific microcircuit parameters18. In comparison to other models
that also include synapse-level parameters, this model has a more synoptic scale,
allowing for structure–function simulations with modest parametric complexity.
For details on the model and its mathematical underpinnings, we refer to the
original publication on the relaxed mean-field model18 and earlier work on the use
of (nonrelaxed) mean-field models42. In brief, these models approximate the
dynamics of spiking and interconnected neural networks through a set of simpli-
fied nonlinear stochastic differential equations. Mean-field models assume that
neural dynamics of a given region are governed by (i) recurrent intra-regional
input, i.e., recurrent excitation/inhibition; (ii) inter-regional input, mediated by
dMRI-based structural connections from other nodes, (iii) extrinsic input, mainly
from subcortical regions, and (iv) neuronal noise18. While the original (non-
relaxed) mean-field models42 assume these parameters to be constant across brain
regions, the relaxed mean-field variant allows recurrent excitation/inhibition and
subcortical/external input to vary. In the model, global brain dynamics of the
network of interconnected local networks is described by the following coupled
nonlinear stochastic differential equations18:

_Si ¼ � Si
τs

þ r 1� Si
� �

H xi
� �þ σνi tð Þ ð1Þ

H xi
� � ¼ axi � b

1� exp �d axi � b
� �� � ð2Þ

xi ¼ WJSi þ GJ
X

j

CijSi þ I ð3Þ

For a given region i, Si in formula (1) represents the average synaptic gating
variable, H(xi)in formula (2) is the population firing rate, and xi in formula (3) is
the total input current. The input current xi is determined by the recurrent
connection strength Wi (i.e., excitation/inhibition) and the excitatory input Ii, such
as from subcortical relays (i.e., subcortical/external input), and inter-regional signal
flow. The latter is governed by Cij, which represents the structural connectivity
between regions i and j, and the global coupling G. The global constant G scales the
strength of information flow from other cortical regions to the region i, relative to
the recurrent connection and excitatory inputs. In Eq. (1), the vi term refers to
uncorrelated Gaussian noise, modulated by an overall noise amplitude σ. Following
prior work18, we set parameters as J= 0.2609 nA, a= 270 n/C, b= 108 Hz, d=
0.154 s, r= 0.641, and τs= 0.1 s.

We fed the group representative structural connectivity matrix, defined using a
distance-dependent thresholding that preserves long-range connections60, and
group averaged functional connectivity matrix into the relaxed mean-field model
optimization, which provided recurrent connection strengths W and excitatory
subcortical inputs I for every cortical region, as well as a global coupling constant G
and a global noise amplitude σ. During parameter estimation, the simulated
synaptic activities Si are fed into the Balloon–Windkessel hemodynamic model157

to simulate fMRI signals of each cortical region. The synaptic activity causes an
increase in vasodilatory signal zi. Inflow fi responds in proportion to this signal
with concomitant changes in blood volume vi and deoxyhemoglobin content qi.

These biological processes are expressed with following equations157:

_zi ¼ Si � κzi � γðfi � 1Þ ð4Þ

_fi ¼ zi ð5Þ

τ _vi ¼ fi � v1=αi ð6Þ

τ _qi ¼
fi
ρ

1� 1� ρð Þ1=fi
h i

� qiv
1=α�1
i ð7Þ

The parameters were determined by following prior work157, where resting
oxygen extraction fraction ρ= 0.34, rate of signal decay κ= 0.65 s−1, rate of
elimination γ= 0.41 s−1, hemodynamic transit time τ= 0.98 s, and Grubb’s
exponent α= 0.32. Given qi and vi, the fMRI signal is given as follows158,159:

fMRI signali ¼ V0 k1 1� qið Þ þ k2 1� qi
vi

� �
þ k3 1� við Þ

� �
ð8Þ

The V0= 0.02 is the resting blood volume fraction and k1, k2, and k3 are a set of
parameters dependent of magnetic field strength and a number of acquisition-
dependent parameters as follows158:

k1 ¼ 4:3ϑ0ρTE ð9Þ

k2 ¼ εr0ρTE ð10Þ

k3 ¼ 1� ε ð11Þ
The parameter ϑ0 = 28.265B0 is the frequency offset at the outer surface of

magnetized vessels and depends on the main magnetic field strength B0, which is
3 T. The ε= 0.47 is the intravascular and extravascular MR signal, and TE is the
echo time.

Global and region-specific parameters were determined by maximizing the
similarity between simulated and empirical functional connectivity, based on a
previously developed neural mass model inversion based on the expectation-
maximization algorithm157,160. Linear correlations between empirical functional
connectivity (FC) and structural connectivity (SC), and that with the simulated
functional connectivity (FC’) of control data were calculated to assess the quality of
the microcircuit parameter estimation (Fig. 2a and S8a). These procedures were
performed with a five-fold cross-validation framework with random separation of
training and test data, and final microcircuit parameters were determined by
averaging across cross-validations. To assess whether the biophysical model predicted
FC better than baseline SC, we implemented three different approaches. First, we
counted the number of cross-validation folds, where the correlation between FC and
FC’ was higher than the correlation between SC and FC. Second, we performed 1000
permutation tests by randomly assigning elements of FC’ and SC. We calculated the
differences in correlations (i.e., corr(pFC’, FC)− corr(pSC, FC), where p denotes
permutation) 1000 times and constructed a null distribution. If the real difference in
correlations (i.e., corr(FC’, FC)− corr(SC, FC)) fell outside of the 95% confidence
interval of the null distribution, we considered the correlation between empirical and
simulated functional connectivity to be significantly higher than the correlation
between structural and empirical functional connectivity. Only one side of the null
distribution was considered. Finally, we evaluated variation of the relaxed mean-field
model using 1000 bootstraps by randomly sampling 90% of subjects with replacement
within each group. To reduce the computational complexity, we first reduced the
dimensionality of structural and functional connectomes based on seven established
functional communities63. Then, we repeated estimating microcircuit parameters
1000 times with the dimensionality reduced connectomes (Supplementary Fig. 8b).
We calculated correlation coefficients between SC and FC 1000 times and constructed
a distribution of the baseline correlations. If the mean correlation between FC and FC’
across bootstraps falls outside of the 95% of the baseline distribution, then we
considered the model to significantly improve the correspondence between empirical
and simulated functional connectivity compared to baseline. Only one side of the null
distribution was considered. The robustness of the estimated model parameters was
assessed by calculating cross correlations of recurrent excitation/inhibition and
subcortical/external input across five folds. The estimated recurrent excitation/
inhibition and subcortical/external input parameters were compared between
individuals with autism and controls using permutation tests by randomly assigning
autism and control groups 1000 times (Supplementary Fig. 8c). The null distribution
was constructed, and if the real difference in each parameter between the groups did
not belong to 95% of the null distribution, it was deemed significant. The p-values
were corrected using FDR149. Linear correlations were calculated between the
differences in these model-derived parameters between groups and t-statistics of
multivariate analysis (Fig. 2b) to evaluate the association between macroscale
structural connectome reorganization and imbalances in microcircuit properties.
Significances of spatial correlations were assessed via 1000 spin test permutations with
randomly rotated microcircuit parameters66.

The group representative structural connectome that underwent distance-
dependent thresholding had a density of 6.31%. A prior study that originally
introduced the relaxed mean-field model18 created the group representative
structural connectome by averaging subject-specific matrices, in addition to
performing a 50% consistency threshold. When we followed this approach, the
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group representative structural connectome would be even sparser (density=
4.20%). We, therefore, assessed consistency of the estimated microcircuit
parameters across different structural connectivity matrix thresholds, with
decreasing consistency constraints ranging from 50% (4.20% density), 20% (8.78%
density), 10% (12.85% density), and 0% (just group average; 35.33% density) of the
subjects with streamlines (Supplementary Fig. 9).

Transcriptomic analysis. To provide additional neurobiological context for our
findings, we assessed spatial correlations between the between-group differences in
the structural manifold and gene expression patterns (Fig. 3a). Initially, we cor-
related the t-statistics map derived from the multivariate group comparison and
the postmortem gene expression maps provided by Allen Institute for Brain
Sciences (AIBS) using the Neurovault gene decoding tool67,68. Neurovault
implements mixed-effect analysis to estimate associations between the input t-
statistic map and the genes of AIBS donor brains without considering subcortical
regions by masking them out from the input data yielding the gene symbols
associated with the input t-statistic map. For each gene, a linear model fits the
input map to each of the six brains donated to the AIBS. A one-sample t-test
assessed whether the relation between the gene expression and input t-statistic
map are consistent across the donated brains. Gene symbols passing FDR-
corrected p < 0.05 were further validated by assessing whether the same gene list
would have been derived from randomly rotated cortical maps. We thus computed
a null distribution of spatial correlations between the expression patterns of the
identified gene list and 100 randomly rotated maps of the multivariate manifold
differences. The actual correlation t-statistic was placed into this null distribution
to assess significance, and findings were again FDR-corrected. We further
examined which of the significant genes were consistently expressed across donors
using abagen (https://github.com/rmarkello/abagen)69. For each gene, we corre-
lated the whole-brain gene expression map between all pairs of donors, and
considered only genes with an average inter-donor r > 0.5 for subsequent analyses.
In a second stage, the significant gene list was fed into enrichment analysis
(Fig. 3b), which involved comparison against developmental expression profiles
from the BrainSpan dataset (http://www.brainspan.org) using the cell-type-
specific expression analysis (CSEA) developmental expression tool (http://
genetics.wustl.edu/jdlab/csea-tool-2)53. As the AIBS repository is composed of
adult postmortem datasets, it should be noted that the associated gene symbols
represent indirect associations with the input t-statistic map derived from the
developmental data. To replicate the gene enrichment results with a different
database, we additionally performed transcriptomic association analysis using the
Genotype-Tissue Expression (GTEx) database (https://www.gtexportal.org/home;
Supplementary Fig. 10a). We used the multigene query function, which calculates
transcripts per million (TPM) of each gene to quantify the degree of enrichment to
a given brain structure. We entered the top 30 ranked genes derived from Neu-
rovault to the multigene query of GTEx. To explore whether the Neurovault
derived genetic signature was associated with autism pathophysiology, we addi-
tionally performed disease enrichment analysis using previously published tran-
scriptome findings for autism, schizophrenia, and bipolar disorder (Fig. 3c)70. A
robust linear regression model was constructed for linking the significance of the
gene expressions (i.e., t-statistic) derived from Neurovault with log fold-change of
autism, schizophrenia, and bipolar disorder, which share similar genetic var-
iants161. The fold-change represents the level to which a gene is over or under
expressed in a particular condition70. Guanine-cytosine (GC) content was con-
trolled to avoid possible effects related to genome size in microarray data162,163.
To address cell-type-specific gene enrichment, we compared the genes associated
with multivariate connectome manifold changes with CSEA proposed in prior
work71,72. The distinct cell types include excitatory and inhibitory neuronal
subtypes in the cortex, and non-neuronal cells of endothelial cells, smooth muscle
cells or pericytes, astrocytes, oligodendrocytes and their precursor cells, and
microglia71,72. For each cell type, we calculated the overlap ratio of how many
genes expressed for manifold changes are included in each cell-type-specific genes
(Supplementary Fig. 10b). To assess the significance of the overlap ratio, we
performed 1000 permutation tests. Among all cell-type-specific genes, we assigned
the genes to each cell type with the same gene length. Then, we calculated the
overlap ratio between the genes expressed for manifold changes and the permuted
cell-type-specific genes. For each cell type, we calculated the overlap ratio 1000
times and constructed a null distribution. If the real overlap ratio did not belong to
95% of the null distribution, it was deemed significant. Multiple comparisons
across different cell types were corrected using the FDR procedure149.

Symptom severity prediction. We adopted a supervised machine learning fra-
mework with nested cross validation54–57 to predict autism symptoms measured by
ADOS73. We aimed at predicting total ADOS scores, as well as subscores for social
cognition, communication, and repeated behavior/interest (Fig. 4 and Supple-
mentary Table 3). We utilized five-fold nested cross validation54–57 and elastic net
regularization74 with regularization parameters ranging from 0.1 (i.e., more to L2-
norm) to 1.0 (i.e., L1-norm). Nested cross-validation split the dataset into training
(4/5) and test (1/5) partitions, and each training partition was further split into
inner training and testing folds using another five-fold cross validation. The model

with lowest overfitting across the inner folds was applied to the test partition of the
outer fold. After controlling for age, sex, and site from a total of 600 (200 regions ×
3 manifolds) features, we selected performant features using elastic net regular-
ization. ADOS score prediction leveraged linear regression with the selected fea-
tures. The procedure was repeated 100 times with different training and test
partitions. Prediction accuracy was benchmarked with linear correlations between
the actual and predicted ADOS scores and the mean absolute error (MAE), and
their 95% confidence interval. Permutation-based correlations across 1000 tests
were conducted by randomly shuffling ADOS scores to verify whether the pre-
diction performance exceeded chance levels. We repeated the prediction analysis
using three-fold nested cross validation, so that each fold includes more training
and test data (Supplementary Table 4).

Sensitivity and specificity analyses.

(a) Site effects: The multivariate group comparison using structural connectome
manifolds was performed for each site (NYU and TCD separately) to see the
consistency of results across different sites (Supplementary Fig. 1d). We also
repeated the symptom severity prediction for each site using five-fold nested
cross validation to assess whether the prediction results are consistent across
different sites (Supplementary Table 5 and 6).

(b) Head motion effects: To rule out whether the macroscale perturbations in
autism related to head motions, we first calculated mean FD from dMRI for
all participants (Supplementary Fig. 2a). Two-sample t-test assessed
between-group differences in head motion. In addition, we repeated the
multivariate manifold comparisons between groups while controlling for
mean FD (Supplementary Fig. 2b).

(c) Age effects: To assess the age-related effects on structural connectome
manifolds, we performed multivariate group comparison in manifolds,
controlled for sex and site, within children (age < 18) and adults (age ≥ 18)
cohorts separately (Supplementary Fig. 3).

(d) Associations to cortical morphology: Several studies have previously
reported atypical cortical morphology in individuals with autism relative
to controls12,19. To assess whether these morphological variations contribute
to our connectome results, we calculated linear correlations between
multivariate findings and cortical morphology measures (i.e., cortical
thickness and cortical curvature) between groups (Supplementary Fig. 4a).
We also repeated the multivariate manifold comparisons while controlling
for cortical thickness and curvature to evaluate whether the connectome-
wide effects can be observed above and beyond potential variations in
cortical morphology (Supplementary Fig. 4b).

(e) Analysis of each manifold dimensions: We compared each manifold
dimension between individuals with autism and controls (Supplementary
Fig. 5). Between-group differences were assessed using 1000 permutation
tests. We FDR-corrected for multiple comparisons149.

(f) Inter-regional connection effects: We also compared the edge values of the
structural connectivity matrix (i.e., streamline cross-section) between
individuals with autism and controls (Supplementary Fig. 6). The
significance of the between-group difference was assessed using 1000
permutation tests followed by FDR-correction149. We further performed
ADOS score prediction using streamline cross-section with five-fold nested
cross validation (Supplementary Table 7)54–57.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging and phenotypic data were provided, in part, by the Autism Brain Imaging
Data Exchange initiative (ABIDE-II; https://fcon_1000.projects.nitrc.org/indi/abide/) 59.
Data for transcriptomic analysis were obtained from BrainSpan dataset (http://www.
brainspan.org) and Genotype-Tissue Expression (GTEx) database (https://www.
gtexportal.org/home). The subsets of data from these databases that were used in the
present work are available from the authors upon request. Source data are provided with
this paper.

Code availability
The codes for connectome manifold generation are available at https://github.com/
MICA-MNI/BrainSpace41; codes for computational circuit modeling are available at
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/fMRI_dynamics/
Wang2018_MFMem18. Transcriptomic association analyses were conducted using
NeuroVault (https://neurovault.org), cell-type-specific expression analysis (CSEA)
(http://genetics.wustl.edu/jdlab/csea-tool-2)53, and abagen tools (https://github.com/
rmarkello/abagen)69.
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