001     905758
005     20240711092252.0
024 7 _ |a 10.1007/s10853-021-06773-6
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a 10.34734/FZJ-2022-00982
|2 datacite_doi
024 7 _ |a WOS:000737750100024
|2 WOS
037 _ _ |a FZJ-2022-00982
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Gross, Jürgen Peter
|0 P:(DE-Juel1)177993
|b 0
|e Corresponding author
245 _ _ |a Conductivity, microstructure and mechanical properties of tape-cast LATP with LiF and SiO2 additives
260 _ _ |a Dordrecht [u.a.]
|c 2022
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688711582_4479
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a LATP sheets with LiF and SiO2 addition prepared by tape casting as electrolytes for solid-state batteries were characterized regarding conductivity, microstructure and mechanical properties aiming towards an optimized composition. The use of additives permitted a lowering of the sintering temperature. Rietveld analyses of the samples with additives revealed a phase mixture of NaSICON modifications crystallizing with rhombohedral and orthorhombic symmetry as a superstructure with space group Pbca. It seems that LiF acts as a sintering additive but also as a mineralizer for the superstructure of LATP. As general trend, higher LiF to SiO2 ratios led to lower porosities and higher values of elastic modulus and hardness determined by indentation testing, but the presence of the orthorhombic LATP leads to a decrease of the ionic conductivity. Micro-pillar testing was used to assess the crack growth behavior revealing weak grain boundaries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
|u fzj
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 2
|u fzj
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 3
|u fzj
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 4
|u fzj
773 _ _ |a 10.1007/s10853-021-06773-6
|g Vol. 57, no. 2, p. 925 - 938
|0 PERI:(DE-600)2015305-3
|n 2
|p 925 - 938
|t Journal of materials science
|v 57
|y 2022
|x 0022-2461
856 4 _ |u https://juser.fz-juelich.de/record/905758/files/s10853-021-06773-6.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905758
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179598
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21