001     905767
005     20220131120341.0
024 7 _ |a 2128/30424
|2 Handle
037 _ _ |a FZJ-2022-00990
100 1 _ |a Wan, Bin
|0 P:(DE-Juel1)188407
|b 0
|e Corresponding author
245 _ _ |a Asymmetry of cortical functional hierarchy in humans and macaques suggests phylogenetic conservation and adaptation
260 _ _ |c 2021
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1642775253_21910
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, i.e., asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a hierarchical functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization. These asymmetries were heritable and comparable between humans and macaques, suggesting (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques and variable heritability in humans. This may reflect an evolutionary adaptation allowing for experience-dependent specialization, linked to higher-order cognitive functions uniquely developed in humans.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
700 1 _ |a Bayrak, Şeyma
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xu, Ting
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schaare, H Lina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bethlehem, Richard AI
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bernhardt, Boris C
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Valk, Sofie
|0 P:(DE-Juel1)173843
|b 6
|e Corresponding author
856 4 _ |u https://juser.fz-juelich.de/record/905767/files/2021.11.03.466058.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905767
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21