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ABSTRACT 

It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural 

pathways, affecting similar brain systems. Here, we assessed i) shared dimensions of alterations in 

cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention 

deficit/hyperactivity disorder, major depression, obsessive-compulsive disorder, bipolar disorder, 

schizophrenia) and ii) carried out a multiscale neural contextualization, by cross-referencing shared 

anomalies against cortical myeloarchitecture and cytoarchitecture, as well as connectome and 

neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness 

measures across six ENIGMA working groups, including a total of 28,546 participants (12,876 

patients and 15,670 controls), we computed a shared disease dimension on cortical morphology using 

principal component analysis that described a sensory-fugal pattern with paralimbic regions showing 

the most consistent abnormalities across conditions. The shared disease dimension was closely related 

to cortical gradients of microstructure and intrinsic connectivity, as well as neurotransmitter systems, 

specifically serotonin and dopamine. Our findings embed the shared effects of major psychiatric 

conditions on brain structure in multiple scales of brain organization and may provide novel insights 

into neural mechanisms into transdiagnostic vulnerability.  

 

KEYWORDS: psychiatric condition; cortical thickness; gradient; cytoarchitecture; neurotransmitter; 

multisite; multiscale 
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INTRODUCTION 

Mental illness refers to a wide range of psychiatric conditions, affecting individuals, families, and 

health systems at large [1]. While conventional psychiatric nosology classifies mental illness into 

distinct categories mainly based on descriptive symptoms and behaviors [2], high co-occurrence of 

symptoms across disorders as well as transdiagnostic risk factors have prompted reconceptualization 

of mental illnesses along symptom dimensions [3–8]. The dimensional framework benefits detailed 

characterization of individual variations, and may allow for more direct brain-behavior associations 

than classic case-control comparisons that capture multiple symptom classes and mask clinical 

heterogeneity.  

The shared components across major psychiatric diagnosis may be more clearly distinguishable at 

the neural level [4, 9], as the behavioral level likely involves complex interactions with society and 

the environment [10]. Structural magnetic resonance imaging (MRI), in particular, offers high spatial 

precision to help resolve the pattern of shared transdiagnostic effects across the cortical surface [4, 

11–16]. A large body of prior case-control studies has reported reproducible patterns of structural 

alterations in cohorts with psychiatric diagnoses relative to controls [17–21], often pointing to 

widespread changes in cortical morphology in these conditions. More recently, efforts have been 

expanded to a transdiagnostic perspective, aiming to identify structural compromise that are shared 

across different diagnoses [22–24]. To ensure sensitivity of such efforts and to strengthen 

reproducibility, it becomes increasingly relevant to pool these investigations across multiple sites. 

One such initiative, spearheaded by the Enhancing NeuroImaging Genetics through Meta-Analysis 

(ENIGMA) consortium, has aggregated MRI and phenotypic data in thousands of healthy individuals 

and those with a psychiatric diagnosis [25]. Moreover, dedicated ENIGMA working groups have 

confirmed neuroanatomical disruptions in major psychiatric indications, including autism spectrum 

disorder (ASD) [26], attention deficit hyperactivity disorder (ADHD) [27], major depressive disorder 

(MDD) [28], obsessive-compulsive disorder (OCD) [29], bipolar disorder (BD) [30], and 

schizophrenia (SZ) [31], pointing to widespread changes in cortical morphology in each of these 

different conditions.   

In addition to providing robust evidence of neuroanatomical signatures associated with each of these 

conditions, an emerging body of studies has pooled data across different indications to identify shared 

anomalies of psychiatric conditions [32, 33]. In an effort to identify factors contributing to the 

topography of cross-disorder brain changes, a recent study has taken this approach one step further 

and examined associations to post mortem gene expression data, searching for spatially co-varying 

gene lists that may carry susceptibility to transdiagnostic disease effects. This study identified that 

transdiagnostic effects may specifically be present in regions with greater expression of CA1 

pyramidal genes that were suggested to play a role in regulating cortical thickness. Beyond these 

molecular risk factors, there is a broad range of cellular, metabolic, and functional properties of brain 

regions that may contribute to the regional susceptibility of transdiagnostic disease effects. An 

influential theory, also referred to as the structural model, posits that the internal microstructural and 

connectional markup of different brain regions, in particular their laminar differentiation and cortico-

cortical connectivity patterns, may represent mesoscale features associated with the potential of a 

region to show plasticity, and to be susceptible to pathological processes [34]. According to this 

framework, paralimbic cortices with low laminar differentiation and higher-order connectivity 

profiles may be more susceptible to effects of neurological as well as psychiatric disorders. Here, we 

tested this approach, by aligning transdiagnostic effects with maps of microstructural variations 

derived from both in vivo imaging and 3D post mortem histology [35–38]. In recent work, the 

application of non-linear eigenvector decomposition to these datasets identified a “sensory-fugal” 

gradient that radiates from sensory and motor areas with strong laminar differentiation and higher 

myelination towards heteromodal association and paralimbic regions with less clear lamination and 
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lower myelin content. Of note, similar gradients have also been derived from the analysis of intrinsic 

functional connectivity patterns obtained from resting-state functional MRI [37–39]. In line with 

foundational neuroanatomical conceptualization [34, 40, 41], an emerging literature has underscored 

a correspondence between such data-driven sensory-fugal gradients, and region-to-region variations 

in cortical plasticity and genetic control [39, 42–46], suggesting that these likely help understand 

susceptibility to disease as well [39, 42, 47–51].  

The study of micro- and macroscale cortical organization as well as the identification of factors 

contributing to disease-related susceptibility for psychiatric conditions can be further complemented 

by studying associations to the neurotransmitter architecture of the human brain. Recent work based 

on in vitro receptor autoradiography in non-human primates has suggested that neurotransmitter 

systems are likely organized along similar gradients as cortical microstructure and connectivity, 

enabling on the one hand rapid and reliable information processing in sensory areas on the one hand, 

and slow, flexible integration of information in higher cognitive areas. Until similar resources become 

available in humans, one can approximate the spatial distributions of different neurotransmitter 

systems in vivo, based on the aggregation of positron emission tomography (PET) and single photon 

computed emission tomography (SPECT) studies sensitive to different receptor an transporter types 

[52–58]. Such mapping can thus provide a molecular perspective to complement microstructural and 

functional connectivity contextualization of transdiagnostic findings, promising new insights into 

factors contributing to the susceptibility of the brain to effects of different psychiatric conditions.   

Here, we studied the association between multiscale neural organization and transdiagnostic effects 

on cortical morphology across six major psychiatric conditions, which represent a broad range of 

common and severe neurodevelopmental indications (ASD, ADHD, MDD, OCD, BD, and SZ). 

Aggregating data from thousands of patients and healthy controls previously studied across several 

ENIGMA working groups [26–31], we defined shared effects using principal component analysis, 

adapting a previous framework [32], and then associated the effects across multiple neural scales, 

namely (i) in vivo myeloarchitecture and intrinsic functional connectivity, (ii) post mortem 3D 

cytoarchitecture, and (iii) in vivo maps of neurotransmitter distributions.  

 

RESULTS 

Study overview and participants 

We obtained case-control maps of cortical thickness differences in patients relative to controls, 

resulting from several ENIGMA meta-analyses provided by a previous study, aggregating a total of 

28,546 participants across 145 independent cohorts (1,821 ASD, 1,815 ADHD, 2,695 MDD, 2,274 

OCD, 1,555 BD, 2,716 SZ; 15,670 site-matched controls Table S1) [32]. We then associated 

principal dimensions of morphological abnormalities with (i) in vivo myeloarchitecture and 

functional connectivity gradients obtained from the Human Connectome Project (HCP) [59], (ii) post 

mortem cytoarchitecture, by cross-referencing data to a ultra-high resolution 3D histological 

reconstruction of a human brain [60], and (iii) in vivo neurotransmitter topographies provided by 

PET/SPECT studies [52–58]. Approaches are openly available and replicable via the ENIGMA 

toolbox (https://enigma-toolbox.readthedocs.io) [61]. See Methods for more details.  

 

Shared dimensions of structural alterations across psychiatric conditions 

Following standardized ENIGMA protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/), 

gray matter thickness for 68 cortical regions of the Desikan-Killany atlas [62] was calculated, and 

meta-analytic between-group differences in cortical thickness were assessed using inverse variance-

weighted random-effects models (Fig. 1A) [32]. Using principal component analysis adopted in a 
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recent study [32], we then estimated the shared disease dimensions explaining structural alterations 

across six conditions (Fig. 1B). The first dimension/component explained 55.7% of variance, and 

differentiated sensory/motor systems having positive scores from transmodal/paralimbic areas with 

negative scores (for details, and information on the other dimensions/components, see Fig. S1A). 

Stratifying the first dimension according to intrinsic functional communities [63], it indeed 

differentiated somatomotor/visual from default/frontoparietal/limbic networks (Fig. 1B). Similar 

spatial patterns were observed across the levels of the putative primate cortical hierarchy [40], 

differentiating idiotypic/unimodal from heteromodal/paralimbic levels. Notably, scores on the 

principal dimension translated into mean effect sizes across case-control analyses, with paralimbic 

regions showing strongest atrophy in patients relative to controls, while sensory/motor regions 

showed the least gray matter alterations (Fig. S1B). We also directly ran principal component analysis 

on previously reported effect size maps (Cohen’s d) concatenated across disorders, sourced from the 

ENIGMA toolbox [61] (Fig. S1C). Findings were highly similar, suggesting robustness. The shared 

disease effect resembled the effects of each condition, with the strongest spatial similarity to SZ and 

BD, followed by MDD, ADHD, ASD, and OCD (spin-test followed by false discovery rate (FDR) 

correction, pspin-FDR < 0.001; Fig. S2), indicating that the shared effect captured structural alterations 

from each condition. We furthermore re-evaluated the shared dimension using leave-one-condition-

out procedure (see Methods), and observed largely consistent results with the shared effect based on 

all conditions (r > 0.9 pspin-FDR < 0.001; Fig. S3), indicating that a single condition with strong meta-

analytic profile did not determine the shared disease effect. 
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Fig. 1 | Shared disease effect and associations to connectivity gradients. (A) Meta-analytic profiles of cortical 

thickness differences (unit in mm) in patients with each psychiatric condition relative to matched controls. 

Positive/negative values indicate increases/decreases in cortical thickness in patients relative to controls. Mean values of 

the regions involved in the same cortical lobes with SD are reported with bar plots. (B) The shared effect was identified 

through principal component analysis (PCA) applied to the concatenated effect size map. Spider plots stratify the effects 

according to functional communities [63] and cortical hierarchy levels [40]. (C) The microstructural and functional 

connectivity gradients were generated by applying non-linear dimensionality reduction techniques to the group averaged 

connectivity matrix (middle left), and each connectivity matrix was reordered (right) according to the first gradients 

(middle right). (D) Spatial correlation of each gradient with the shared effect map are shown in the scatter plots. The 

distribution of correlation coefficients across 1,000 spin-tests are reported with histograms, and the actual r-values are 

represented with red bars. Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; 

MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD, bipolar disorder; SZ, schizophrenia; HC, 

healthy controls. 
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Associations with cortical myeloarchitecture and functional connectivity gradients 

To assess in vivo micro- and macroscopic properties of the shared disease dimension on cortical 

morphology, we first examined its association with myeloarchitecture and intrinsic functional 

connectivity gradients [37, 39] (see Methods; Fig. 1C). The microstructural gradient was derived 

from inter-regional similarity matrices of intracortical profiles of myelin-sensitive MRI [37] , and 

runs from sensory/motor regions with high laminar differentiation and high intracortical myelin 

content towards paralimbic cortices with reduced laminar differentiation and low myelin content [37]. 

The intrinsic functional gradient was derived from resting-state functional MRI connectivity. While 

it also runs from sensory to transmodal areas, it finds its apex in the heteromodal default mode and 

frontoparietal networks, and not in paralimbic cortices [39]. Associating the patterns of shared 

dimension with these two in vivo gradients, we observed a negative association with the 

microstructural gradient (r = -0.400, pspin-FDR = 0.042) and a negative trend with the functional 

connectivity gradient (r = -0.247, pspin-FDR = 0.090; Fig. 1C). In other words, transdiagnostic 

morphological alterations follow sensory-fugal gradients of cortical organization, in particular the 

microstructural gradient that differentiates sensory/motor areas with high myelination and distinct 

lamination from paralimbic areas with low myelin content and reduced laminar differentiation.  

  

Cytoarchitectonic associations 

We furthermore examined associations with cortical cytoarchitecture [36], using a 3D histological 

reconstruction of a post mortem human brain, the BigBrain [60, 64]. We calculated cortex-wide 

variations in cytoarchitecture using two alternative approaches. First, we obtained intracortical 

intensity profiles and calculated their statistical moments, i.e., mean, SD, skewness, and kurtosis (Fig. 

2A-B). In both classic cytoarchitecture analysis and more recent work, these features have been 

shown to relate to inter-areal microstructural differentiation [38, 65]. For example, the skewness 

moment describes spatial transition from areas with low laminar differentiation and negative 

skewness to those with high laminar differentiation and positive skewness [65–67]. Moreover, we 

computed externopyramidization [68], describing gradual shift of intensity profiles across cortical 

layers that has been suggested to differentiate areas on the lower end of the cortical hierarchy from 

those that are higher up due to hierarchical shifts in laminar projection profiles [69] (Fig. 2A-B). 

Spatial correlations between these features and the principal disease dimension indicated relations to 

both profile skewness (r = 0.400, pspin-FDR = 0.015) and externopyramidization (r = 0.472, pspin-FDR = 

0.015; Fig. 2C). In other words, transdiagnostic alteration in cortical morphology was more likely in 

paralimbic regions with low skewness and low externopyramidization, independently confirming that 

those areas with low laminar differentiation were more likely to show transdiagnostic cortical 

alterations.   
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Fig. 2 | Cytoarchitectonic associations with the shared disease effect. (A) Cytoarchitectonic moment features of mean, 

SD, skewness, and kurtosis, as well as externopyramidization of intracortical intensity profile were calculated from the 

post mortem human brain, and (B) plotted on brain surfaces. (C) Spatial correlations between the features and shared 

effects are shown on scatter plots. The distributions of correlation coefficients across 1,000 spin-tests are reported with 

histograms, and the actual r-values are represented with red bars. Abbreviation: SD, standard deviation. 

 

Associations with distributions of neurotransmitter systems 

Neurotransmitter contextualization leveraged JuSpace [52], a toolbox that disseminates in vivo 

PET/SPECT data sensitive to ten different transmitters/transporters/receptors from independent 

studies in healthy human adults [53–58] (Fig. 3A). Associating the shared dimension with cortex-

wide neurotransmitter maps, we observed positive associations with D2 and 5-HT1b receptor 

densities (D2: r = 0.280, pspin-FDR = 0.035; 5-HT1b: r = 0.349, pspin-FDR = 0.025), and negative 

correlations with dopamine transporter and 5-HT1a receptor density (DAT: r = -0.240, pspin-FDR = 

0.041; 5-HT1a: r = -0.307, pspin-FDR = 0.033; Fig. 3B). The results indicate that common cortical 

abnormality patterns across psychiatric and neurodevelopmental conditions may be reflected by 

serotonergic and dopaminergic systems. More specifically, higher transdiagnostic cortical atrophy 

was related to higher 5-HT1a and lower 5-HT1b, as well as higher DAT and lower D2 receptor density. 
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Fig. 3 | Associations of neurotransmitter systems with shared disease effect. (A) Schema of neurotransmitter systems 

of transmitters, transporters, and receptors. (B) Spatial correlations of each neurotransmitter map with shared effect are 

shown on scatter plots. The distributions of correlation coefficients across 1,000 spin-tests are reported with histograms, 

and actual r-values are reported with red bars. The spider plot shows correlation coefficients. Cortex-wide spatial maps 

of the transmitter systems are reported on brain surfaces. Abbreviations: FDOPA, 18F fluorodopa; DAT, dopamine 

transporter; NAT, noradrenaline transporter; SERT, serotonin transporter. 

 

Prediction of the shared disease effect 

As a final analysis, we used supervised machine learning to predict the shared dimension using the 

above multiscale features. Specifically, we leveraged least absolute shrinkage and selection operator 

(LASSO) regression [70] with five-fold nested cross-validation [71–74] to predict the cross-condition 

effect using concatenated multiscale features (see Methods; Fig. 4A). Repeating the analysis for 100 
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times with different training and test dataset subsplits, we could reliably predict the spatial pattern of 

the shared disease dimension (mean ± SD r = 0.518 ± 0.044, mean absolute error (MAE) = 0.828 ± 

0.039, pperm < 0.001; Fig. 4B). Cytoarchitectural skewness and externopyramidization, followed by 

D2 and 5-HT1b receptors, as well as the microstructural gradient were frequently selected across 

cross-validations and repetitions (Fig. 4A). When considering each psychiatric condition separately, 

we could find significant prediction performances, but the features selected diverge across conditions 

(Fig. S4).  

 
Fig. 4 | Association between the shared disease effect and multiscale features using machine learning. (A) 

Probability of the selected features across five-fold nested cross-validations and 100 repetitions for predicting the shared 

disease effect. The frequently selected features are reported with asterisks. (B) Linear correlation between actual and 

predicted values of the effects is shown on a scatter plot. Black line indicates mean correlation and gray lines represent 

the 95% confidence interval for 100 iterations with different training/test datasets. Abbreviations: SD, standard deviation; 

FDOPA, 18F fluorodopa; DAT, dopamine transporter; NAT, noradrenaline transporter; SERT, serotonin transporter; 

MAE, mean absolute error. 

 

 

DISCUSSION 

The current work determined cortex-wide variations in susceptibility to morphological alterations 

across six major psychiatric conditions (i.e., ASD, ADHD, MDD, OCD, BD, and SZ), and cross-

referenced these spatial patterns against multiscale cortical organization. Specifically, studying data 

aggregated by several multi-site ENIGMA consortia on the above indications [26–32], we identified 

a shared morphological dimension that followed a sensory-fugal pattern of increasing susceptibility 

to morphological alterations in paralimbic regions. Moreover, we cross-referenced these findings 

against neural axes previously described by (i) in vivo MRI measures sensitive to cortical 

myeloarchitecture and intrinsic functional connectivity [37, 39], (ii) post mortem histological 

measures sensitive to cytoarchitecture, in particular laminar differentiation [36, 38, 60, 65], and (iii) 

in vivo PET/SPECT derived measures of cortical neurotransmitter systems [52–58]. Our findings 

revealed that the transdiagnostic dimension of morphological anomalies closely aligned with 

microstructural gradients differentiating sensory/motor from paralimbic areas on the basis of cortical 

cyto- and myeloarchitecture, together as well as the variable distribution of serotonin and dopamine 

neurotransmitter systems. By offering new insights into multiscale neural features that align with 

cortical structural compromise across several psychiatric conditions, our work outlines micro- and 

macroscale determinants of cerebral vulnerability to the effects of common mental illnesses. 

Complementing earlier case-control MRI studies performed separately in common neuropsychiatric 

conditions [17, 26–31, 75], an emerging literature of both primary observational studies [22–24] as 

well as meta-analyses [32, 33] has increasingly investigated sets of disorders to explore 

transdiagnostic effects on brain structure. Recently, these studies were complemented by dimensional 

data decomposition approaches of cortical morphological data, for example a recent factor analysis 
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[33] and principal component analyses [32]. We extended these prior studies by calculating mean 

effect size of the previously published condition-specific effects [32], as well as applying principal 

component analysis to the effect sizes and those sourced from the ENIGMA toolbox [61], confirming 

robust patterns. Specifically, the first shared dimension of cortical morphological alterations 

described a gradual axis running from sensory-motor regions at one end towards transmodal and most 

specifically paralimbic areas on the other end. In a prior study, the shared dimension was cross-

referenced against gene expression information from the Allen Brain Institute [76–78], a 

comprehensive microarray-derived transcriptomics dataset based on four post mortem brains in the 

left and two in both left and right hemispheres. Using this resource, the authors found that 

transdiagnostic effects were highest in brain regions expressing genes for pyramidal cornu Ammonis 

1 (CA1) cells, a finding that may already point towards a potentially increased susceptibility of limbic 

allocortices to transdiagnostic effects on brain morphology [32]. Here, we extended these findings by 

contextualizing the shared disease effect across multiple scales of neural organization, including 

cortex-wide variations in myeloarchitecture, cytoarchitecture, intrinsic functional connectivity, as 

well as neurotransmitter distributions.  

The in vivo microstructural cortical gradient was defined using a recently-introduced procedure [37], 

which identified axes of cortico-cortical differentiation based on the similarity of myelin-sensitive 

MRI profiles sampled across cortical depths. In healthy adults and adolescents [37, 65], this approach 

has revealed a robust sensory-fugal cortical gradient running from sensory/motor areas with marked 

laminar differentiation and high myelin content towards paralimbic cortices with low overall 

myelination and rather agranular cortical profiles. By showing an association between the shared 

dimension and this microstructural gradient, we confirm an overall heightened susceptibility of 

paralimbic cortices to disease-related cortical thickness changes. Several architectonic features of the 

paralimbic cortices may underscore their increased susceptibility to disease-related effects. On the 

one hand, these regions have an architecture that may permit an increased potential for brain plasticity. 

This includes an overall reduced neuronal density in paralimbic regions compared to eulaminate 

cortices that may be more permissive for dendritic arborization and synaptogenesis [34]. Paralimbic 

areas also express several developmental markers into adulthood that cease to be expressed in other 

areas after ontogeny, such as growth associated protein GAP-43 [79]. On the other hand, limbic areas 

are known to have a relatively late myelination compared to sensory/motor areas and lower overall 

myelin content in adults. The role of intracortical myelination in plasticity is likely to be complex, 

but several streams of evidence point to a role of myelin acting as a buffer against plasticity. In 

addition to acting as an insulator for electrical transmission, myelin associated growth inhibitors limit 

activity and experience-induced axon sprouting, with downstream effects of synaptic plasticity [80]. 

The reduced myelin content, together with increased complexity of dendritic arborization in 

transmodal and paralimbic regions may render cortical microstructure in these regions more 

susceptible to pathological alterations, which would echo observations in other neurological 

conditions. For example, the core pathological substrates of drug-resistant temporal epilepsy is 

thought to be localized in limbic/paralimbic regions [81–83], and prior work has suggested rather 

specific changes in myelin and microstructural proxies in these areas [84, 85]. Similar findings have 

been observed in degenerative conditions such as Alzheimer’s disease [44, 86, 87] as well as 

depression [88] and autism [89, 90], where pathology spreads from disease epicenters in paralimbic 

allocortices to invade more widespread cortical/subcortical networks.  These findings collectively 

show that cellular and molecular features of paralimbic cortices and their cortico-cortical pathways 

promote brain plasticity as well as higher metabolic activity, and are thus likely more vulnerable to 

both developmental as well as acquired disruptions than other regions, supporting the hypothesis that 

their cortical type predisposes to a heightened vulnerability for an impact of neuropsychiatric 

conditions on alterations in brain morphology [34].   
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Studying the post mortem 3D BigBrain [60], we obtained supporting confirmation for the above 

association between cortical microstructure and disease related susceptibility. In particular, we 

discovered similarly marked associations between the shared disease dimension and laminar profile 

skewness as well as externopyramidization, both features assessing depth-dependent shifts in the 

distribution in cell densities [38, 68]. In prior work, we reported that the profile skewness feature 

discriminates unimodal granular cortices from agranular/dysgranular paralimbic regions at a cortex-

wide level [65], and also helped to delineate the iso-to-allocortical axis in the mesiotemporal lobe 

system [66]. Studying typical adolescent development, changes in profile skewness of myelin-

sensitive MRI contrasts have furthermore been reported to spatially co-localize with expression 

patterns of genes enriched in oligodendrocytes [65]. As a complementary feature of laminar 

organization, externopyramidization classically contextualizes the ratio of neuronal densities between 

supragranular and infragranular cortical layers. It increases when the cortex is cytoarchitectonically 

more differentiated, which happens in primary areas with a marked layer 4 [68]. Thus, the association 

of these cortical depth-dependent cytoarchitectural features with the shared disease effect confirms 

the in vivo findings with ultrahigh resolution cytoarchitecture data suggesting that paralimbic areas, 

sensitive to transdiagnostic cortical alterations, are less laminarly differentiated. Furthermore, prior 

cellular and transcriptomic studies indicate regional susceptibility of synaptic elements as well as 

mutated genes in schizophrenia [91, 92] and bipolar disorder [93]. Indeed, major depression may 

cause atrophy of neurons in limbic regions [94], pointing histopathological susceptibility of 

paralimbic areas in psychiatric conditions.  

We also observed a marginal association between the transdiagnostic effect on brain structure and the 

principal functional connectivity gradient, but findings were overall weaker than for the above in vivo 

and post mortem derived microstructural gradients. Motifs of macroscale intrinsic functional 

connectivity also show an overall sensory-fugal pattern [40, 95–97], but the associated gradients 

generally run from sensory/motor towards more heteromodal association cortices such as the default 

mode and frontoparietal networks, and not the paralimbic regions. These findings may indirectly 

support the conclusion that transdiagnostic disease effects on brain morphology may more closely 

align with spatial trends in microstructure rather than with macroscale functional differentiation. As 

brain organization show functional heterogeneity and multiplicity, investigation of associations 

between the transdiagnostic effects and multiple functional gradients is required for further studies. 

Notably, however, the cortical morphological data from the ENIGMA dataset were only available in 

the Desikan-Killany parcellation [62], a relatively macroscopic scheme mainly based on sulco-gyral 

features. In addition to not offering a high granularity on cortical arealization, the reliance on folding 

alone may only provide rather limited sensitivity to contextualize our findings with respect to 

functional topographies. It would thus be relevant to re-evaluate functional gradient association based 

on functionally-defined parcellations [98, 99] or at a vertex-level.   

In addition to our findings showing overall associations between the transdiagnostic effect and 

sensory-fugal microstructural gradients, we observed associations to the spatial distribution of 

different neurotransmitter systems derived from in vivo neuroimaging. Notably, associations were 

seen both to serotonin (5-HT1a and 5-HT1b) and dopamine receptors and transporters (DAT/D1 and 

D2), two important markers of mental health and targets for pharmacological treatments [100–108]. 

In both cases (i.e. 5-HT1a vs 5-HT1b, DAT/D1 vs D2), associations to the disease effect were of 

opposite polarity, confirming prior work in rodents [109–113] and humans [114–117]. Associations 

with in vivo neurotransmitter topographies provide a novel way of indirectly assessing the relationship 

between shared abnormalities on cortical morphology and neurotransmitter systems so that we can 

understand putative mechanisms of shared morphological abnormalities, extending prior work from 
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rodents and humans. As an integrative analysis, we opted for supervised machine learning to predict 

the shared disease effect. This analysis revealed that not a single feature, but rather combinations of 

both microstructure and dopamine/serotonin transmitter systems have highest utility in predicting the 

spatial pattern of the transdiagnostic morphological dimensions. Overall, our findings add new 

evidence for a principal organizational dimension that differentiates sensory-motor networks from 

transmodal cortices in typical human brain organization [37, 39, 118], and furthermore describes the 

main axis of cortex-wide susceptibility to transdiagnostic effects of common mental health conditions. 

Altogether, the observed associations between multiscale neural mechanisms and transdiagnostic 

anomalies of cortical morphology provide a potentially integrative framework for understanding 

neuropathology in psychiatry and the development of treatment that cut across traditional disease 

boundaries.  
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METHODS 

Study dataset 

a) ENIGMA data: We analyzed T1-weighted data from people with a diagnosis of (n = 12,876) ASD 

(n = 1,821), ADHD (n = 1,815), MDD (n = 2,695), OCD (n = 2,274), BD (n = 1,555), and SZ (n = 

2,716) and site matched healthy controls (n = 15,670) from 145 independent cohorts participating in 

prior ENIGMA consortium studies [26–31]. Demographic information is summarized in Table S1 

and available in a recent cross-condition study [32]. Data from each center were processed using the 

standard ENIGMA workflow (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Processing 

was conducted using FreeSurfer [119–121] that involves magnetic field inhomogeneity correction, 

non-brain tissue removal, intensity normalization, and tissue segmentation. Estimated white and pial 

surfaces were inflated to spheres and registered to the fsaverage template. Based on the Desikan-

Killiany atlas [62], cortical thickness was measured for 68 gray matter brain regions. For each 

psychiatric condition, the ENIGMA groups performed multiple linear regression analyses to fit 

cortical thickness measures with age, age squared, sex, and site information. The meta-analytic 

profiles of between-group differences between patients and controls were estimated via an inverse 

variance-weighted random-effects model, which can be obtained from the previous study [32] (Fig. 

1A). If the studies provided multiple effect sizes across children/adolescents/adults, only the effects 

from the adult sample were used, in order to match the age range across conditions. The 

positive/negative effects indicate increases/decreases in cortical thickness in patients relative to 

controls. Individual cohort investigators obtained approval from local institutional ethics boards, and 

informed consent was obtained from study participants or their guardians.  

b) HCP data: To generate microstructural and functional connectivity gradients, we also studied 207 

unrelated healthy young adults (60% females, mean age ± SD = 28.73 ± 3.73 years) from the HCP 

dataset [59]. In the HCP, multimodal imaging data comprising T1- and T2-weighted as well as rs-

fMRI were acquired on a Siemens Skyra 3T at Washington University. The cohort selection is 

identical to our prior work [61, 122]. T1-weighted images were acquired using a magnetization-

prepared rapid gradient echo (MPRAGE) sequence (repetition time (TR) = 2,400 ms; echo time (TE) 

= 2.14 ms; inversion time (TI) = 1,000 ms; flip angle = 8º; field of view (FOV) = 224 × 224 mm2; 

voxel size = 0.7 mm isotropic; 256 slices). T2-weighted data were obtained using a T2-SPACE 

sequence, with the same acquisition parameters as for the T1-weighted data except for TR (3,200 ms), 

TE (565 ms), and flip angle (variable). The rs-fMRI data were collected using a gradient-echo echo-

planar imaging sequence (TR = 720 ms; TE = 33.1 ms; flip angle = 52º; FOV = 208 × 180 mm2; 

voxel size = 2 mm isotropic; number of slices = 72; and 1,200 volumes per time series), where 

participants were instructed to keep their eyes open looking at a fixation cross during the scan. Two 

sessions (left-to-right and right-to-left phase-encoded directions) of rs-fMRI data were acquired, 

providing up to four time series per participant. 

Images underwent minimal preprocessing pipelines using FSL, FreeSurfer, and Workbench as 

follows [123–125]: 

i) T1- and T2-weighted data: Data were corrected for gradient nonlinearity and b0 distortions, and 

then T1- and T2-weighted data were co-registered using a rigid-body transformation. Bias field was 

adjusted based on the inverse intensities from the T1- and T2-weighting. The white and pial surfaces 

were generated [119–121], and the mid-thickness surface was generated by averaging them. The mid-

thickness surface was inflated and the spherical surface was registered to the Conte69 template with 

164k vertices [126] using MSMAll [99] and downsampled to a 32k vertex mesh.  

ii) Microstructure data: Myelin-sensitive proxy was estimated based on the ratio of the T1- and T2-

weighted contrast [127, 128]. We generated 14 equivolumetric surfaces within the cortex and sampled 

T1w/T2w intensity along these surfaces [37]. A microstructural similarity matrix was constructed by 
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calculating linear correlation of cortical depth-dependent T1w/T2w intensity profiles between 

different cortical regions based on the Desikan-Killiany atlas [62], controlling for the average whole-

cortex intensity profile [37]. The matrix was thresholded at zero and log-transformed [37]. A group 

matrix was constructed by averaging matrices across participants. 

iii) rs-fMRI data: Data were corrected for distortions and head motion, and registered to the T1-

weighted data and subsequently to MNI152 standard space. Magnetic field bias correction, skull 

removal, and intensity normalization were performed. Noise components attributed to head 

movement, white matter, cardiac pulsation, arterial, and large vein related contributions were 

removed using FMRIB’s ICA-based X-noiseifier (ICA-FIX) [129]. Preprocessed time series were 

mapped to the standard ‘grayordinate’ space using a cortical ribbon-constrained volume-to-surface 

mapping algorithm. The total mean of the time series of each left-to-right/right-to-left phase-encoded 

data was subtracted to adjust the discontinuity between the two datasets and then concatenated to 

form a single time series. A functional connectivity matrix was constructed by calculating the linear 

time series correlations between Desikan-Killiany parcels [62], followed by Fisher’s r-to-z 

transformation [130]. Individual connectivity matrices were averaged to construct a group level 

connectome.  

 

Shared effects of cortical thickness differences across conditions 

To assess transdiagnostic effects of cortical thickness differences in patients relative to controls, we 

applied principal component analysis to the concatenated effect size maps across six conditions [131] 

(Fig. 1B and Fig. S1A). The first principal dimension was determined as the shared disease effect. 

We summarized the effects according to seven intrinsic functional communities [63], as well as four 

cortical hierarchical levels [40]. We additionally calculated mean effect size across the conditions to 

intuitively interpret shared disease effect (Fig. S1B), and also estimated principal dimension based 

on the data sourced from the ENIGMA toolbox (i.e., Cohen’s d; Fig. S1C). We compared the shared 

dimension and the effect size of each condition via linear correlations to assess the degree of 

contribution of each condition (Fig. S2). The significance of the correlation was determined using 

1,000 non-parametric spin-tests, to account for spatial autocorrelation [132], and corrected for 

multiple comparisons using a FDR procedure [133]. To assess robustness, we performed leave-one-

condition-out cross-validation. Specifically, we estimated the shared dimension using five conditions 

by excepting for a single condition, and assessed similarity with the shared disease effect estimated 

based on the whole six conditions (Fig. S3). We calculated significance of the correlation using 1,000 

spin-tests, and multiple comparisons were corrected using FDR [132, 133]. 

 

Associations to microstructural and functional connectivity gradients 

We evaluated the underlying connectome organizations of the shared disease effects. Based on 

T1w/T2w and rs-fMRI data obtained from the HCP database [59], we estimated microstructural and 

functional gradients, the low dimensional representation of connectome organizations explaining 

spatial variation in the connectome data [37, 39], using BrainSpace (https://github.com/MICA-

MNI/BrainSpace) [97] (Fig. 1C). An affinity matrix was constructed with a normalized angle kernel 

from the group averaged connectivity matrix with the top 10% entries for each parcel. The 

connectome gradients were estimated using diffusion map embedding [134], which is robust to noise 

and computationally efficient compared to other non-linear manifold learning techniques [71, 135]. 

It is controlled by two parameters α and t, where α controls the influence of the density of sampling 

points on the manifold (α = 0, maximal influence; α = 1, no influence) and t scales eigenvalues of the 

diffusion operator. The parameters were set as α = 0.5 and t = 0 to retain the global relations between 

data points in the embedded space, following prior applications [37, 39, 47, 97, 136]. We associated 

the shared effect with these gradients using linear correlation (Fig. 1D), where the significance was 
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assessed using 1,000 spin-tests followed by FDR [132, 133]. 

 

Cytoarchitectonic associations with shared disease effects 

We aimed to associate the shared dimensions with histology-driven cytoarchitectonic features derived 

from BigBrain surfaces with 62 cortical areas (https://bigbrain.loris.ca/main.php) [60]. Specifically, 

BigBrain is a ultra-high resolution, 3D volumetric reconstruction of a post mortem Merker-stained 

and sliced human brain from a 65-year-old male, with specialized pial and white matter surface 

reconstructions [60]. The post mortem brain was paraffin-embedded, coronally sliced into 7400 20-

μm sections, silver-stained for cell bodies [137], and digitized. A 3D reconstruction was implemented 

with a successive coarse-to-fine hierarchical procedure, resulting in a full brain volume. Among 68 

regions defined by the Desikan-Killiany atlas [62], three regions per hemisphere, including banks of 

superior temporal sulcus, frontal pole, and temporal pole, were excluded as the BigBrain did not 

provide data for these regions. We generated 18 equivolumetric cortical surfaces within the cortex 

(https://github.com/caseypaquola/BigBrainWarp) and sampled the intensity values along these 

surfaces. Based on the intensity values, we calculated four moment features, including mean, SD, 

skewness, and kurtosis, as well as externopyramidization (Fig. 2A-B). The mean and SD represent 

the overall intensity distribution of cytoarchitecture across layers, skewness indicates shifts in 

intensity values towards supragranular layers (i.e., positive skewness) or flat distribution (i.e., 

negative skewness), and kurtosis identifies whether the tails of the intensity distribution contain 

extreme values. Externopyramidization reflects gradual shifts of intensity values from infragranular 

to supragranular layers defined as follows [69]: 

𝐸𝑥𝑡𝑒𝑟𝑛𝑜𝑝𝑦𝑟𝑎𝑚𝑖𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) 

𝑚𝑒𝑎𝑛(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)
×

1−𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑠𝑢𝑝𝑟𝑎

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑡𝑜𝑡𝑎𝑙
  (1) 

To assess associations with shared disease effects, we calculated linear correlations between 

cytoarchitectonic features and shared effects (Fig. 2C). The significance of the correlations was 

assessed using 1,000 spin-tests followed by FDR across different cytoarchitectonic features [132, 

133]. 

 

Associations between transmitter systems and shared effects 

To provide underlying molecular properties of the shared effects in neuroanatomical disruptions 

across different psychiatric conditions, we associated the shared dimensions with ten different 

neurotransmitter maps of healthy controls provided by prior independent PET/SPECT studies [53–

58], which contain neurotransmitters of FDOPA, GABAa, transporters of DAT, NAT, SERT, and 

receptors of D1, D2, 5-HT1a, 5-HT1b, and 5-HT2a (https://github.com/juryxy/JuSpace) [52] (Fig. 

3A). All PET maps were linearly rescaled to have intensity values between 0 and 100 [52]. After 

mapping the neurotransmitter maps onto the Desikan-Killiany atlas [62], we calculated linear 

correlations between the shared effects and each neurotransmitter map (Fig. 3B), and assessed the 

significance using 1,000 spin tests followed by FDR to adjust for multiple comparisons across ten 

different maps [132, 133].  

 

Prediction of shared effects using multiscale features 

We associated multiscale features and shared effects using supervised machine learning to 

incorporate our findings (Fig. 4). Specifically, we aimed to predict the shared disease effects using 

concatenated multiscale features of microstructural and functional gradients, cytoarchitectonic (i.e., 

mean, SD, skewness, kurtosis, externopyramidization), and transmitter maps (i.e., D1, D2, 5-HT1a, 

5-HT1b, 5-HT2a, FDOPA, GABAa, DAT, NAT, SERT). We used five-fold nested cross-validation 

[72–74] with LASSO regression [70]. Nested cross-validation split the dataset into training (4/5) and 
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test (1/5) partitions, and each training partition was further split into inner training and testing folds 

using another five-fold cross-validation. The model with the best performance (lowest MAE) across 

the inner folds was applied to the test partition of the outer fold. Among the multiscale features, we 

selected performant features using LASSO regularization, and the effect size was predicted using 

linear regression with the selected features. The procedure was repeated 100 times with different 

training and test partitions. Prediction accuracy was evaluated with linear correlations between the 

actual and predicted effect size and the MAE, with their 95% confidence interval. Permutation-based 

correlations across 1,000 tests were conducted by randomly shuffling cortical regions to verify 

whether the prediction performance exceeded chance levels. We also performed the prediction 

analysis using the effect size of each condition (Fig. S4).   
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Supporting Information 

Table S1 | Demographic information of studied participants.  

Condition Number* Mean (SD; range) age (years) Sex (male:female) 

ASD/controls 1821/1823 15.6 (6.7; 2–64) 2941:703 (19% female) 

ADHD/controls 1815/1602 21.1 (5.4; 4–74) 2244:1172 (34% female) 

MDD/controls 2695/3627 40.9 (10.9; 8–89) 2665:3657 (58% female) 

OCD/controls 2274/2013 27.2 (8.0; 5–65) 2166:2121 (49% female) 

BD/controls 1555/3423 35.1 (12.0; 8–86) 2142:2836 (57% female) 

SZ/controls 2716/3272 33.9 (10.7; 7–87) 3479:2509 (42% female) 

Detailed information available in eTable 1 and eTable 2 of Patel et al., 2021. Abbreviations: SD, 

standard deviation; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; 

MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD, bipolar disorder; SZ, 

schizophrenia. 
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Fig. S1 | Shared disease effect. (A) The second and third dimensions of shared disease effect. (B) 

Mean effect size of cortical thickness alterations across conditions. (C) Principal dimension based on 

the effect size maps (Cohen’s d) sourced from the ENIGMA toolbox. The effects were stratified 

according to functional communities and cortical hierarchy levels. 
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Fig. S2 | Linear correlations between the shared disease effect and cortical thickness alterations 

of each condition. Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit 

hyperactivity disorder; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD, 

bipolar disorder; SZ, schizophrenia; HC, healthy controls. 
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Fig. S3 | Shared disease effects with leave-one-condition-out cross-validation. The shared 

dimensions estimated based on all conditions without a single condition are reported on brain surfaces. 

Linear correlations between the shared effect based on all conditions (see Fig. 1B) and that based on 

five conditions are shown in the scatter plots. Abbreviations: ASD, autism spectrum disorder; ADHD, 

attention deficit hyperactivity disorder; MDD, major depressive disorder; OCD, obsessive-

compulsive disorder; BD, bipolar disorder; SZ, schizophrenia; HC, healthy controls. 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.29.466434doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.29.466434
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

Park et al. | Cross-condition effects of major psychiatric conditions 

32 

  

Fig. S4 | Association between the effect size of each psychiatric condition and multiscale features. 

(A) Probability of the selected features for each psychiatric condition. (B) Linear correlations between 

actual and predicted values of the effects are shown using scatter plots. For details, see Fig. 4. 

Abbreviations: SD, standard deviation; FDOPA, 18F fluorodopa; DAT, dopamine transporter; NAT, 

noradrenaline transporter; SERT, serotonin transporter; MAE, mean absolute error. 
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