001     905788
005     20240711085617.0
024 7 _ |a 10.1021/acsaem.1c03000
|2 doi
024 7 _ |a 2128/31079
|2 Handle
024 7 _ |a altmetric:120153615
|2 altmetric
024 7 _ |a WOS:000736860600001
|2 WOS
037 _ _ |a FZJ-2022-01011
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Roitzheim, Christoph
|0 P:(DE-Juel1)177016
|b 0
245 _ _ |a Boron in Ni-Rich NCM811 Cathode Material: Impact on Atomic and Microscale Properties
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651041291_19156
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Doping of Ni-rich cathode active materials with boron is a promising way to improve their cycling stability and mitigate their degradation, but it is still not understood how this effect is achieved and where the boron is located. To receive deeper insights into the impact of doping on atomic and microscale properties, B-doped Li[Ni0.8Co0.1Mn0.1]O2 (NCM811) cathode materials were synthesized by a hydroxide coprecipitation as a model compound to verify the presence and location of boron in B-doped, Ni-rich NCM, as well as its impact on the microstructure and electrochemical properties, by a combined experimental and theoretical approach. Besides X-ray diffraction and Rietveld refinement, DFT calculation was used to find the preferred site of boron absorption and its effect on the NCM lattice parameters. It is found that boron shows a trigonal planar and tetrahedral coordination to oxygen in the Ni layers, leading to a slight increase in lattice parameter c through an electrostatic interaction with Li ions. Therefore, B-doping of NCM811 affects the crystal structure and cation disorder and leads to a change in primary particle size and shape. To experimentally prove that the observations are caused by boron incorporated into the NCM lattice, we detected, quantified, and localized boron in 2 mol % B-doped NCM811 by ion beam analysis and TOF-SIMS. It was possible to quantify boron by NRA with a depth resolution of 2 μm. We found a boron enrichment on the agglomerate surface but also, more importantly, a significant high and constant boron concentration in the interior of the primary particles near the surface, which experimentally verifies that boron is incorporated into the NCM811 lattice.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a Verbundvorhaben SimCaMat: Modellierung und Synthese verbesserter Kathodenmaterialien (03EK3054A)
|0 G:(BMBF)03EK3054A
|c 03EK3054A
|x 1
536 _ _ |a MEET HiEnD III - Materials and Components to Meet High Energy Density Batteries (13XP0258B)
|0 G:(BMBF)13XP0258B
|c 13XP0258B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)178838
|b 1
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
|e Corresponding author
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 4
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 5
700 1 _ |a Valencia, Helen
|0 P:(DE-Juel1)177677
|b 6
700 1 _ |a Meledina, Maria
|0 P:(DE-Juel1)174171
|b 7
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 8
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 9
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 10
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 11
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 12
773 _ _ |a 10.1021/acsaem.1c03000
|g p. acsaem.1c03000
|0 PERI:(DE-600)2916551-9
|n 1
|p 524–538
|t ACS applied energy materials
|v 5
|y 2022
|x 2574-0962
856 4 _ |y Published on 2021-12-23. Available in OpenAccess from 2022-12-23.
|u https://juser.fz-juelich.de/record/905788/files/Boron%20in%20Ni-rich%20NCM811%20cathode%20material_neue%20EC_20210922_final_revised.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/905788/files/acsaem.1c03000-1.pdf
909 C O |o oai:juser.fz-juelich.de:905788
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177016
910 1 _ |a Universität Duisburg-Essen
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)177016
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178838
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177677
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)177677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)174502
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2021
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21