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Abstract12

The volatility of renewable energy sources leads to the development of electricity13

markets with different time horizons, where flexible consumers can monetize their flex-14

ibility to stabilize the electric grid. From an electricity-user perspective, the optimal15

monetization strategy and choice of markets is difficult to identify. We consider si-16

multaneous participation in an ancillary service market with pay-as-bid mechanism17

and a day-ahead market. We develop a formulation based on Benders decomposition18

that decouples the participation in both markets. This allows to optimally distribute19
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flexibility to bids in an ancillary service market and participation in day-ahead market1

via scheduling optimizations. In particular, our formulation allows the optimization2

problem to be solved with general-purpose nonlinear programming solvers. We demon-3

strate that using the proposed decomposition is computationally more efficient than4

our previously published enumeration-based approach.5

keywords: Demand-Side Management, Ancillary Service Markets, Benders Decomposition,6

Model-Based Bidding Strategies7

1 Introduction8

Renewable energy sources have the potential to solve the climate crisis (Houghton, 2009),9

but are fluctuating in time. An established way to help synchronize supply and demand in10

electricity grids powered by fluctuating renewable energy suppliers is demand-side manage-11

ment (Mitsos et al., 2018; Strbac, 2008; Gellings, 1985), which refers to all efforts to utilize12

consumer flexibility for grid stability.13

Flexible electricity users can monetize their flexibility in a variety of markets: For ex-14

ample, Schäfer et al. consider combined participation in a day-ahead market and primary15

balancing reserve market (Schäfer et al., 2019b), and extend their approach to also partici-16

pating in the secondary balancing reserve market (Schäfer et al., 2019a). Otashu and Baldea17

(2018) aim for participation of a chlor-alkali process in a 15-minute market and Dowling18

et al. (2017) consider both a hierarchy of ancillary service markets addressing different time19

scales and a hierarchy of spot markets from day-ahead market to real-time trading. Finally,20

Zhang et al. (2016) also consider specially negotiated contracts such as discount and penalty21

contracts. As done in (Dowling et al., 2017), the markets can be categorized into markets22

for ancillary services and spot markets. Ancillary services, i.e., providing balancing reserve23

capacity, are often sold in auction-based markets. If a bid is accepted, the electricity user24

permanently has to reserve sufficient flexibility to serve potential balancing requests within25

a tight time frame. Alternatively, flexible electricity users can exploit price fluctuations on26

a spot market to schedule overproduction during times of cheap electricity and reduce con-27
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sumption when electricity becomes expensive (Ramin et al., 2018; Zhang and Grossmann,1

2016; Castro et al., 2011, 2009). The question of how much flexibility to monetize in which2

market is a complex optimization problem (Bohlayer et al., 2018; Klæboe and Fosso, 2013),3

as answering the question requires simultaneous consideration of an optimal bidding strat-4

egy and the influence of that bidding strategy on the ability of the process to reduce its5

production cost on a spot market.6

The markets around the globe, both for ancillary services and spot markets, are evolving7

(Eid et al., 2016; Hu et al., 2018). The considered time horizons for ancillary service bids,8

payment mechanisms for accepted bids, qualifications of participation in ancillary service9

markets and spot markets and several other details are adapted, in part based on research10

with the goal to harmonize the markets. We follow the German market structure presented11

in our previous work (Schäfer et al., 2019b): a pay-as-bid balancing reserve market and12

the day-ahead market. Therein, we developed a method to optimally distribute flexibility13

between these two markets. Our solution approach in (Schäfer et al., 2019b) relies on ex-14

plicit enumeration of scenarios of acceptance and rejection of bids on the balancing market.15

Because of combinatorial explosion, such an algorithm rapidly becomes intractable, even on16

modern computers. To facilitate computationally more efficient solution algorithms for the17

simultaneous optimization of bidding strategy and production scheduling, we improve on18

both the formulation and solution approach presented in our previous work (Schäfer et al.,19

2019b).20

Our novel formulation is based on the idea of Benders decomposition (BD) (Benders,21

1962) to separate the production scheduling problem from the optimal bidding problem. BD22

relies on strong duality of the subproblems of the decomposition. In our case, the subprob-23

lem is the scheduling problem, which is often formulated as Mixed-Integer Linear Problem24

(MILP) (Zhang and Grossmann, 2016) because such models have the capability to model a25

broad variety of situations and powerful solution algorithms exist for this class of problems.26

For example, Zhang et al. (2016) model continuous process networks, Kelley et al. (2018)27
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formulate MILP-models to integrate scheduling and control, and Raman and Grossmann1

(1991) formulate logic constraints as mixed-integer linear constraints. The scheduling prob-2

lem in (Schäfer et al., 2019b) is also formulated as MILP. Despite all the advantages that3

come with this problem class, strong duality rarely holds for MILPs. Therefore, it is not4

enough to reformulate the interaction between scheduling problem and bidding problem. We5

also reformulate the scheduling problem itself to a continuous linear program (LP), so that6

strong duality holds.7

The key contributions of this work are:8

• We reformulate the scheduling model in a way that strong duality holds.9

• We exploit the property of strong duality to embed optimal scheduling information in10

a bidding strategy model. As a consequence, explicit enumeration is not required to11

find an optimal bidding strategy anymore.12

• We reconstruct results from (Schäfer et al., 2019b) and show that our new formulation13

enables solution algorithms that can be more efficient than explicit enumeration.14

2 Background15

Production processes are subject to a variety of constraints to satisfy quality standards,16

safety requirements, timing of demand and supply, and storage space. Other constraints17

arise from physics and technical limits. An optimal schedule satisfies all these constraints18

and chooses the degrees of freedom of the process in a way that optimizes the process aim.19

Typically, many degrees of freedom of energy-intensive processes can be found in the pro-20

duction profile, i.e. the distribution of utilized production capacity over time can be chosen21

by process operators. Historically, such profiles have often been a flat nominal production22

rate to keep the process control simple. However, increasingly fluctuating electricity prices23

give rise to demand for optimal production scheduling, in particular for energy-intensive24

processes. Research in this field is done for a broad variety of applications: seawater desali-25

nation (Jabari et al., 2019; Ghobeity and Mitsos, 2014), air separation (Basán et al., 2020;26
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Caspari et al., 2020; Tsay et al., 2019), chlor-alkali processes (Otashu and Baldea, 2019;1

Brée et al., 2019), and cooling of buildings (Sadat-Mohammadi et al., 2020) are some recent2

examples. Often, the uncertainty of electricity prices is accounted for with stochastic or3

robust programming in the references mentioned above. Fluctuating electricity prices also4

affect the revenue of power generators, so optimal scheduling for electricity generation and5

distribution is also studied (Alirezazadeh et al., 2020; Bostan et al., 2020; Thaeer Hammid6

et al., 2020). Generic production processes are considered in (Schäfer et al., 2020) and (Cas-7

tro et al., 2011). A common ground of optimal scheduling research findings is developed in8

(Maravelias, 2012), while (Harjunkoski et al., 2014) focuses more on future challenges in the9

field.10

We will integrate the scheduling problem into a bidding strategy problem with a BD.11

This approach is well suited for computationally decoupling components of an optimization12

problem without compromising solution quality and has had tremendous success in opti-13

mization problems in virtually all application areas, including electricity grids (Mansouri14

et al., 2020; Saberi et al., 2020), logistics (Alkaabneh et al., 2020; Fischetti et al., 2017) and15

production scheduling (Fang et al., 2021; Michels et al., 2019). While BD is still advancing16

– see (Rahmaniani et al., 2017) for a recent review – we will only need the basic concepts17

which connect subproblems that are pure LPs (Benders, 1962) or convex nonlinear programs18

(NLP) with constraint qualifications (Geoffrion, 1972) to a master problem.19

Our master problem will be the problem of finding the optimal amount of balancing20

capacity to offer and the optimal ask price for each offer as presented in (Schäfer et al., 2019b).21

Therein, an aluminum electrolysis process participating in the German primary balancing22

market is considered. The following tradeoffs need to be optimized: a larger amount of23

offered balancing capacity – when accepted – generates more revenue from the balancing24

market, but reduces the flexibility available for the process to exploit price fluctuations on a25

spot market through an optimal production schedule. The ask price also directly influences26

the revenue generated on the balancing market. However, since the grid operators are more27
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likely to accept lower prices, a large ask price comes with the risk of being rejected, thus1

jeopardizing all potential balancing market revenue.2

In the literature, optimal bidding strategies are studied in different fields of application.3

Power production from conventional thermal power plants (Plazas et al., 2005; Conejo et al.,4

2002) and from hydropower (Faria and Fleten, 2011; Fleten and Kristoffersen, 2007) were5

among the first considered applications. Through aggregation of several entities which alone6

would not be allowed to enter restricted markets, consumer pools were enabled to partici-7

pate in those markets, e.g. residential pools (Nizami et al., 2020) or industrial aggregators8

(Ottesen et al., 2018). On an even larger scale, (Khajeh et al., 2019) aggregated several9

electrical microgrids to a price-making entity of the market.10

3 An Improved Formulation to Integrate Optimization of Bidding Strategy and11

Flexible Scheduling12

In (Schäfer et al., 2019b), we developed a model of an aluminum electrolysis participating13

in a pay-as-bid balancing market and a day-ahead spot market. We reported that a mono-14

lithic formulation, including both the bidding and the scheduling problem, does not allow to15

compute a global solution with state-of-the-art solvers. Instead, we exploited that the vari-16

ables which couple bidding and scheduling are the amounts of reserved balancing capacity.17

Because of market regulations, the offered capacities have to have integer values. Therefore,18

there is only a finite number of feasible values that are coupling bidding and scheduling,19

which facilitates an enumeration. We pre-computed the solution of all possible scheduling20

problems before using these solutions in an explicit enumeration of the acceptance/rejection21

scenarios of the bids. Then, the remaining NLP to find the optimal ask prices is solved22

to global optimality for each scenario. Using the pre-computed scheduling results this way23

requires that only integer-valued points are considered also in the bidding problem. Thus,24

the explicit enumeration is necessary, general-purpose MINLP solution algorithms can not25

be applied. The latter would require the relaxation of the integrality requirements, which is26

not possible since optimal schedules can only be pre-computed for a finite number of scenar-27
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ios. Our novel formulation introduces bounds for the scheduling problem through BD. These1

bounds are valid for fractional values of offered balancing capacities. Thus, our formulation2

enables the use of general-purpose MINLP solution algorithms.3

BD is a decomposition of a problem into a master problem (here the bidding problem)4

and a subproblem (here the scheduling problem), where only few terms are coupling the5

master and the subproblem (here the reserved balancing capacity). The subproblem can6

be formulated parametrically in the coupling terms. For an effective decomposition, the7

subproblem has to be easy to solve once the coupling terms are fixed. From such a subproblem8

solution, a cut can be generated. These Benders-cuts (BCs) are inequalities that are added to9

the master problem. They describe a lower bound on the objective value of the subproblem10

as a function of the coupling terms, which are decision variables in the master problem.11

Such a bound is sharp for at least the value the coupling terms were fixed to in the run12

that generated the cut. Moreover, the lower bound is valid for all values of coupling terms,13

including fractional values after relaxing integrality constraints.14

As we will show, by representing the scheduling problem with BCs in the bidding problem,15

the latter can be solved as one Mixed-Integer Nonlinear Problem (MINLP). This was not16

possible in (Schäfer et al., 2019b) because the tabulated solutions for the scheduling problem17

were only available for integral values of the coupling terms. As we demonstrate in our18

case study, we can compute the solution for the optimal bidding problem with integrated19

scheduling computationally more efficiently.20

3.1 The Process Model of Aluminum Production21

We already presented a decomposition of the simultaneous optimization of bidding strat-22

egy and production scheduling to a bidding problem and a scheduling problem in (Schäfer23

et al., 2019b). Although it was not used for a BD, the scheduling problem was already24

formulated parametrically in the amount of balancing capacity that had to remain reserved.25

We review the most important aspects of the aluminum production process and its model.26

The process in general is very simple: a bauxite-based liquid electrolyte feeds an electrolysis27
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cell, where electrical power is used to form aluminum from aluminum ions. The aluminum is1

heavier than the electrolyte and sediments to the bottom of the electrolysis cell, where it can2

be collected. The plant that runs this process is located in Essen, Germany and operated3

by TRIMET Aluminium SE (Schäfer et al., 2019b). In our model, the power consumption4

of the process can vary between 75% and 125% of the nominal power consumption. As the5

process was optimally designed for nominal operation, production at rates above or below6

100% of nominal power consumption is less efficient (the specific electricity requirement7

increases). This effect is modeled with a cubic relation between power consumption and8

resulting aluminum production. Due to efficiency losses for both over- and underproduction,9

the aluminum production curve as a function of power consumption is concave. Also, if the10

production rate exceeds or subceeds 100%, the accumulated thermal energy in the process11

increases or decreases. To prevent damage in the electrolysis cells, the accumulated thermal12

energy must not exceed two days of maximum power uptake worth of accumulated energy.13

Similarly, to prevent freezing of the electrolyte in the cells, the accumulated thermal energy14

must not fall below two days of minimum power uptake worth of thermal energy reduction.15

Within the given bounds for the power consumption, the aluminum electrolysis can switch16

from one power consumption level to another within seconds, as already pointed out by17

Todd et al. (2008). Since primary balancing requests require a response within seconds, the18

ability to change power consumption fast is a prerequisite for the process to provide primary19

balancing capacity. The agility of the process also allows us to describe the process as a20

quasi-stationary model with noncontinuous production changes. The time is discretized in21

hourly intervals because we consider participation in a day-ahead market providing hourly22

prices. The scheduling problem minimizes cost for electricity and opportunity cost for lost23

aluminum production due to efficiency losses.24

Other processes with dynamic operational limits could also be modeled: if linear ramping25

constraints are used, the resulting description would still lead to an LP scheduling problem.26

However, such processes will probably have to participate in other markets, that pose less27
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tight response requirement, for example, the secondary balancing market that is also con-1

sidered in (Schäfer et al., 2019a).2

3.2 Scheduling Problem Formulation with Strong Duality3

A prerequisite for computing valid BCs is that strong duality holds for the scheduling4

problem. While this property typically does not hold in MILP formulations, it always holds5

for continuous LPs and convex NLPs with constraint qualifications. LPs as subproblems are6

used in the original BD (Benders, 1962), convex NLPs are used in generalized BD (Geoffrion,7

1972). We formulated the scheduling problem as MILP in (Schäfer et al., 2019b); now we8

reformulate it as LP to prepare the decomposition. In particular, we deconstruct the usage9

of binary variables in the scheduling model used in (Schäfer et al., 2019b) and then develop10

a reformulation that provides a continuous LP.11

3.2.1 Origin of Binary Variables12

In (Schäfer et al., 2019b), we linearized the cubic relation between power consumption and13

aluminum production to avoid a nonlinear optimization problem with a piecewise lineariza-14

tion on disjunctive intervals, which requires the introduction of binary variables to keep15

track of the linearization intervals. This results in the following description of the aluminum16

production rate:17

ṁt =
∑
i∈I

yi,t · bi +
∑
i∈I

P
(lin)
i,t · si, (1)

18

yi,t ∈ {0, 1} ∀i ∈ I; ∀ t ∈ {1, · · · , T}, (2)
19 ∑

i∈I

yi,t = 1 ∀ t ∈ {1, · · · , T}, (3)

where ṁt denotes aluminum production rate in time slot t, electrical power input is denoted20

with P
(lin)
i,t , and the linearization parameters slope and intercept are denoted with si and bi.21

Finally, yi,t are indicators for the relevant linearization interval i from the set of linearization22

intervals I in time slot t. A scheduling horizon of one week with hourly resolution leads to23

T = 168. In combination, (2) and (3) ensure that in each time slot t exactly one yi,t is equal24
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to one. Thus, the first sum in (1) has exactly one nonzero addend. The entries of the power1

input P (lin) obeys the following bounds:2

P
(lin)
i,t ≥ yi,t · P (lin)

MIN,i ∀ i ∈ I; ∀ t ∈ {1, · · · , T}, (4)

3

P
(lin)
i,t ≤ yi,t · P (lin)

MAX,i ∀ i ∈ I; ∀ t ∈ {1, · · · , T}, (5)

with Big-M parameters P
(lin)
MIN,i and P

(lin)
MAX,i, leading to exactly one nonzero addend of the4

second sum in (1).5

3.2.2 Reformulation Without Binary Variables6

For a formulation without binary variables, we do not keep track of linearization intervals.7

Rather, we can interpret the linear functions defined by slope si and intercept bi as globally8

valid inequalities, below which the aluminum production rate has to stay. Every inequality9

is the tightest one on the interval it was designed for, because the original nonlinear function10

has a concave curvature. Conversely, an inequality is redundant on every interval it was not11

designed for. The linear inequalities for the production rates ṁt are:12

ṁt ≤ bi + Pt · si ∀ i ∈ I; ∀t ∈ {1, · · · , T}. (6)

In (6), the parameters si and bi are the same as in the corresponding (1) from the mixed-13

integer scheme. (2) and (3) do not have counterparts, since this linearization approach does14

not require binary variables. Also, upper and lower bounds for the power input Pt do not15

depend on the linearization intervals. Simple box constraints are derived from technical16

considerations:17

Pt ≥ PMIN ∀ t ∈ {1, · · · , T}, (7)
18

Pt ≤ PMAX ∀ t ∈ {1, · · · , T}. (8)

How is it possible to replace equality constraints with inequality constraints, as we pro-19
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pose? Admittedly, with our reformulation, we changed the feasible set of the scheduling1

problem. Now that we are using inequalities to model the relation between electrical power2

input and aluminum output, a nonnegative, but nonphysically low aluminum production3

is feasible for any electrical power input that obeys the bounds for power input. However,4

the objective of the scheduling problem is designed to minimize production cost including5

opportunity cost for not produced products. To minimize this opportunity cost, any optimal6

point is on the upper bound of feasible aluminum production – as long as the aluminum7

price is positive, which is a reasonable assumption for any industrially produced good. The8

upper bound of feasible aluminum production is exactly the feasible set of the MILP formu-9

lation that used equalities. Mathematically, this is because the projection of the objective10

function to the ṁt-Pt-plane always has a positive component along the ṁt-axis, so it always11

points towards maximum production for products with a positive price. Figure 1 sketches12

the new feasible set with globally valid inequalities and visualizes the projection of the ob-13

jective function to illustrate that every possible optimal point is also a feasible point of the14

MILP-model from (Schäfer et al., 2019b).15

Pt

ṁt

electricity price

product
price

Figure 1: The lines defined by the si and bi are globally valid inequalities. Each line is
sketched solid on the interval i it was designed for, and dashed on neighboring intervals.
In the Pt-ṁt-plane, the piecewise linear relation composed of the solid line segments would
be the feasible region of the integer-based formulation; the green area would be the feasible
region of the integer-free formulation. All possible optimal points remain on the solid line
segments since the objective function (projected with blue arrow) favors maximum allowed
production, as it always has a component in positive ṁt-direction for positive product prices.

Our formulation of the scheduling problem now has exactly the same optimal points as16

11



the MILP-formulation presented in (Schäfer et al., 2019b), but additionally has the property1

that strong duality holds. As a consequence, we can now formulate BCs that underestimate2

the optimal cost of production, even when integrality requirements are relaxed. A possible3

alternative to the linearization we propose is to stick to the nonlinear formulation of alu-4

minum production. Thereby, a convex NLP would arise, which could be used to generate5

the required cuts as well by using generalized BD. However, as in (Schäfer et al., 2019b), we6

decided to use a linearization because it reduces the complexity of the problems to solve.7

The real-world prerequisite for such a modeling approach without integers was the cur-8

vature of the relation between production and electrical power input. This is a pattern that9

can be found in many real-world flexible processes, because plants are still designed and op-10

timized for one specific operation point of nominal operation. Then, any deviation from the11

nominal operation comes with efficiency losses. When a stronger deviation from the design12

point leads to more efficiency losses, a concave relation between production and electrical13

power input emerges. In turn, the problem of optimally scheduling a flexible process might14

be nonlinear, but it stays a convex problem. Further, the absence of logical or other non-15

continuous phenomena allows to formulate the scheduling problem without using binary or16

integer variables.17

3.3 Embedding Solutions of Scheduling Problems in the Bidding Problem18

When strong duality holds, optimal objectives of primal and dual problem are equal.19

BD is based on the idea that the dual problem corresponding to the primal subproblem has20

a feasible set that is independent from the values of the coupling terms. Thus, the dual21

problem can be described by its extreme points and extreme rays, and the coupling term22

values only determine the direction of the objective function. In LPs, an optimal solution23

point of a feasible and bounded problem can always be found on an extreme point of the24

feasible set. So, to embed the subproblem in the master problem, it suffices to describe all the25

extreme points and extreme rays of the dual feasible set in the master problem. The objective26

function of the dual problem on all those points is a lower bound for the optimal value of27
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the primal problem – and at least one point’s dual objective is equal to the optimal value of1

the primal subproblem. However, this is only theoretically interesting because the number2

of extreme points and extreme rays of a problem grows exponentially with the problem size.3

Usually, when BD is successful, the reason is that a provably optimal point is found by only4

adding a small fraction of extreme points and extreme rays of the dual feasible set to the5

master problem rather than performing an exhaustive enumeration.6

The term that couples the bidding problem and the scheduling problem is the amount of7

balancing capacity that has to remain reserved. Due to market restrictions, it is a bounded8

integer quantity. In the primal scheduling model, the reserved capacity directly affects the9

box constraints of electrical power inputs Pt and the production loss due to efficiency losses10

in off-design production when the balancing capacity is called. Because the coupling term is11

a bounded integer, it can only take finitely many feasible values.12

In the perspective of the dual scheduling problem, the integrality requirements of the13

coupling term imply that only a finite number of objective functions is possible in the dual14

scheduling problem. Thus, rather than enumerating all extreme rays and extreme points of15

the dual feasible set, we enumerate all possible objective functions of the dual scheduling16

problem. This yields all possible optimal schedules which can be represented in the bidding17

problem through BCs. In fact, one could iterate between master and subproblem like Ben-18

ders originally suggested (Benders, 1962). Such an algorithm would add representations of19

optimal schedules iteratively and hope to find a provably optimal point before computing all20

possible optimal schedules. Whether that is efficient depends on the computational effort to21

solve the master problem relative to the computational effort to solve the subproblem.22

A BC can be generated from the optimal solution of a scheduling problem by fixing the23

amount of balancing capacity that has to remain reserved. This term is just a parameter24

of the scheduling problem, but it does not explicitly exist in the bidding problem. There,25

it is uncertain which offers will be accepted and therefore what balancing capacity has to26

remain reserved. In the following paragraphs, we describe how we solve this issue by defining27
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scenarios for which bids are accepted.1

3.3.1 Scenarios for Accepted Bids2

In the bidding problem, the degrees of freedom are – for each bid b allowed to be placed –3

one amount of balancing capacity P PRL
b in MW and a corresponding ask price Ab in e/MW.4

To break symmetry, we sort the bids in ascending order of prices, i.e.5

A1 ≤ A2 ≤ · · · ≤ AB, (9)

where B is the number of bids allowed to be placed in the model. An offer will be accepted6

when the ask price is below the maximum price the grid operators will accept, Aacc,max. In7

the bidding problem, Aacc,max is a continuous random variable. With a suitable stochastic8

model for the maximum accepted ask price Aacc,max, such as the one presented in (Schäfer9

et al., 2019b), the probability that a bid with ask price Ab will be accepted can be computed10

with11

P(bid b accepted) = P(Aacc,max ≥ Ab) = 1− P(Aacc,max ≤ Ab). (10)

After ordering the bids according to (9), we can define discrete scenarios by aggregating

all values for Aacc,max between two ask prices plus two more scenarios to describe the case

where the maximum accepted ask price is below respectively above all ask prices Ab. We

will refer to the scenario in which all bids from the first to the bth bid are accepted and all

other bids are rejected as scenario b(acc). From (10), we derive the probability for any of

14



these scenarios as:

PB(acc) = 1− P(Aacc,max ≤ AB) (11)

Pb(acc) = P(Ab ≤ Aacc,max ≤ Ab+1)

= P(Aacc,max ≤ Ab+1)− P(Aacc,max ≤ Ab) ∀ b = {1, · · · , B − 1}, (12)

P0(acc) = 1−
B∑
b̃=1

Pb̃(acc) (13)

where P0(acc) denotes the probability of scenario 0(acc) – in which all bids are rejected–, Pb(acc)1

denotes the probability of scenario b(acc), and PB(acc) denotes the probability that all bids2

are accepted, i.e. the probability of scenario B(acc). Now, the bidding problem is able3

to optimize the expected value of scheduling cost and revenue from balancing markets by4

weighting the optimally scheduled production cost and the PRL revenue from each scenario5

with the probability of that scenario.6

3.3.2 Representing Costs of Optimal Schedules in the Bidding Problem with7

BC8

The amount of balancing capacity that has to remain reserved is the sum of the offered9

capacities P PRL
b of all accepted bids. This sum is the term that couples bidding problem10

and scheduling problem. Because the coupling terms are scenario-dependent, the BC that11

relate coupling terms and the representation of optimal production cost are also formulated12

for each scenario b(acc), except for the scenario 0(acc) in which all bids are rejected:13

C
(sched)

b(acc)
≥ ρc − µc ·

b(acc)∑
b=1

P PRL
b ∀ c ∈ {0, · · · , 10}, ∀ b(acc) ∈ {1(acc), · · · , B(acc)} (14)

where C
(sched)

b(acc)
represents the optimal production cost in scenario b(acc) of the bidding problem.14

In case that all offers are rejected, we do not need to specify any BC; the optimally scheduled15

production cost for the full flexibility available on the day-ahead market is computed before16
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the solution of the bidding problem and specified as parameter C
(sched)

0(acc)
. The coefficients1

ρc and µc can be computed according to (Benders, 1962) from the dual solution of the2

scheduling problem in which c MW had to remain reserved for balancing requests. Note3

that the scheduling problem only depends on this reserved balancing capacity. In particular,4

the optimal schedule and the corresponding dual solution are independent of whether the5

reserved balancing capacity was just due to one single bid or the sum of several bids. As a6

consequence, the coefficients ρc and µc are independent of the scenario b(acc).7

By adding BCs to the bidding problem, we have represented all possible optimal schedules8

in the bidding problem with a few linear inequalities rather than the fully blown scheduling9

problem. The remaining bidding problem has to optimize the offered capacities P PRL
b and10

corresponding ask prices Ab. General-purpose (MI)NLP solvers can construct and use valid11

continuous relaxations of the bidding problem because it contains BCs that describe valid12

lower bounds for the optimally scheduled production cost for all fractional values of offered13

capacity. Therefore, this formulation can be solved by implicit enumeration algorithms. Like14

explicit enumeration, such algorithms have an exponential runtime in the worst case, but in15

practice they are often more efficient than explicit enumeration.16

4 Case Study17

We repeat the case study of an aluminum production process presented in (Schäfer et al.,18

2019b), which we briefly reviewed in Subsection 3.1, and simultaneously optimize bidding19

strategy and production scheduling for this setup. We compare solving the original formula-20

tion by an explicit enumeration scheme to solving our reformulation with a general-purpose21

MINLP solver. Coming from the bidding model and scheduling model presented in (Schäfer22

et al., 2019b), we replace the parts of the scheduling model described in Section 3.2.1 with23

our reformulation presented in Section 3.2.2. The amount of reserved balancing capacity24

determines both the flexible range of electrical power input and the production losses due25

to efficiency losses when a balancing request is issued by the grid.26

We compute all possible cuts prior to solving the bidding-MINLP. We solve the scheduling27

16



LPs for all feasible balancing capacities and compute all corresponding ρc and µc to build1

all required cuts (14). This guarantees that we only have to solve one MINLP. Also, we can2

derive tight bounds for the objective and the variables C
(sched)

b(acc)
which represent the optimally3

scheduled production cost in the bidding MINLP. The effort for solving the scheduling LPs4

is negligible compared to solving the MINLP. In other setups (less complex bidding and5

more complex scheduling problem), an algorithm with few iterations between master and6

subproblems might be suitable, as discussed in Section 3.3.7

Following (Schäfer et al., 2019b), we take market data from the first four weeks of 2018 in8

Germany to describe primary balancing market and the day-ahead market. We run the case9

study for the number of allowed bids B ranging from 1 to 3, again adopting form (Schäfer10

et al., 2019b). Note that in practice, one bid on the primary balancing market suffices to11

find a good solution (Schäfer et al., 2019b), but we want to examine the benefit of our12

reformulation of the problem also for the computationally more complex case of B = 3.13

For (mixed-integer) nonlinear optimization problems, such as our bidding problem, it is14

desirable to solve for a global optimum. For this purpose, we choose the global deterministic15

optimization solver BARON (Tawarmalani and Sahinidis, 2005; Zhou et al., 2018). We also16

tried to solve the bidding problem with our solver MAiNGO (Bongartz et al., 2018), which17

is based on McCormick-relaxations (McCormick, 1976; Mitsos et al., 2009; Tsoukalas and18

Mitsos, 2014) rather than the auxiliary variable method. However, MAiNGO performed19

inferior to BARON. We do not know the reason for the performance differences, but remark20

that BARON and MAiNGO differ substantially in many aspects, for example, MAiNGO uses21

McCormick-relaxations (McCormick, 1976; Mitsos et al., 2009; Tsoukalas and Mitsos, 2014),22

while BARON uses the auxiliary variable method. Further differences are the methods to23

treat bilinear products, and whether the code is open-source or commercially available, to24

name some more examples. All calculations were carried out on a Server equipped with an25

Intel(R) Xeon(R) Silver 4112 CPU @2.60 GHz and 256GB RAM. We used a single thread and26

called BARON through the GAMS 28.2-interface (GAMS Development Corporation, 2019).27

17



Our code, including a MATLAB script to compute the BC coefficients from the scheduling1

problems, is publicly available on http://permalink.avt.rwth-aachen.de/?id=963420.2

5 Results and Discussion3

We solved the problem of simultaneous optimization of bidding strategy in pay-as-bid4

markets and production scheduling with the explicit enumeration strategy from (Schäfer5

et al., 2019b) and as monolithic MINLP enabled by our reformulation. As convergence6

criterion, we define a relative optimality gap of 0.1%. Such a tight relative tolerance is desired7

because the absolute production costs are several hundred thousand euros per week. Thus,8

even relatively small savings correspond to a significant absolute cost reduction. Tighter9

tolerances would not be justified, given the approximate model.10

The two algorithms find comparable solutions in all studied setups. As shown in Table11

1, the bidding strategies sometimes differ slightly, but the relative differences in the optimal12

objectives are significantly smaller than the optimality tolerance and as such, both solutions13

are optimal. Figure 2 shows the optimal schedules for two scenarios from week 4: If no14

bid is accepted, the full process flexibility is available and will be exploited by the process.15

If some flexibility has to remain reserved as balancing capacity, the feasible domain for Pt16

becomes tighter. The schedule shown in the bottom of Figure 2 is the optimal schedule for17

both explicit enumeration and MINLP formulation in week 4 with B = 2, if both bids are18

accepted. In this case, the MINLP solution is to bid 6 MW in the first bid and 1 MW in the19

second bid, whereas the explicit enumeration approach would be to split the bids into 5 MW20

and 2 MW. However, if both bids are accepted, the total reserved balancing capacity –which21

determines the optimal schedule– is 7 MW either way. Since the LP formulation developed22

in Section 3 has the same optimal points as the MILP formulation in (Schäfer et al., 2019b),23

the optimal schedules are independent of the chosen formulation.24

In Table 2, we present the CPU time required to execute the solve statements for both25

approaches (provided by the GAMS (GAMS Development Corporation, 2019) parameter26

etSolve). The scheduling step that takes place before the explicit enumeration, respectively27

18
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Figure 2: Optimal schedules in week 4; in the top for the scenario where no bid is accepted,
and in the bottom where the total reserved balancing capacity is 7 MW.
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the MINLP-solution process, takes around 60 seconds for all 4 weeks with the MILP formu-1

lation from (Schäfer et al., 2019b) and 13 seconds for all 4 weeks with our LP-reformulation2

from Section 3.2. Table 2 shows that our reformulation decreases the time required for global3

optimization of a bidding strategy with simultaneous consideration of production scheduling4

with access to a day-ahead market. Our MINLP approach often reduces the time explicit5

enumeration requires by more than 70% and up to 87%. Only in setups with B = 3, the6

performance of our MINLP approach is mixed, for which we do not have a clear explanation.7

With increasing B, the MINLP problem size, i.e, the number of variables and constraints8

increases. While the increase is mostly linear in B, as each additional bid gives one addi-9

tional acceptance scenario to consider, the computational effort for solving a linearly growing10

problem grows exponentially. In contrast, in the explicit enumeration scheme, the number11

of NLPs that have to be solved grows combinatorially, and the NLP size grows linearly. It12

is hard to judge if these effects contribute to the mixed performance of our reformulation13

relative to the explicit enumeration scheme. Another potentially relevant aspect might be14

the tolerances: as we argued before, 10−3 is quite a tight tolerance for global optimization15

solvers, but it is justified in our context. In our preliminary studies, we have seen that with16

a tolerance of 10−2, for both the NLPs in explicit enumeration, and the MINLP resulting17

from our reformulation, our MINLP is still 50%-90% faster than the explicit enumeration18

for all the scenarios with B = 3. This is an indication that the tight tolerances have a larger19

impact on the one large MINLP formulation, than on the many smaller NLPs that are solved20

during explicit enumeration.21

The runtime until the optimal solution is found when BARON solves our MINLP formu-22

lation is given in the last column of Table 2. Often, the optimal solution is already found in23

BARON’s preprocessing step. This means that BARON quickly finds the optimal solution24

and spends the vast majority of the runtime proving its optimality by refining the lower25

bound. We did not try to solve the problem with local solvers because the globally optimal26

solution can be considered a local solution as soon as it is found, i.e. within less than one27

20



second. Such an algorithmic behavior is common in deterministic global optimization. The1

existence of a global lower bound is the second advantage of general-purpose MINLP solvers2

over explicit enumeration in which no lower bound is available. With the lower bound, a3

guaranteed optimality gap for the solution is available as soon as an incumbent solution4

is found. Another advantage of the MINLP formulation over the explicit enumeration ap-5

proach is that just one call to BARON is required to solve one MINLP, which might reduce6

solver-calling-related computational overhead.7

In explicit enumeration, the time to find the optimal solution depends on the enumeration8

order, which is arbitrary. Therefore, we only show the time to complete the enumeration in9

Table 2, not the time until the optimal solution is found. In this case study, the differences10

between the optimal objectives of different scenarios can be up to 2.5% of the optimal11

expected cost. This seemingly small difference is in fact very relevant because the majority12

of cost savings is achieved by optimally scheduling the production to exploit price differences13

in the day-ahead market. When we compare optimal objectives of different scenarios, the14

schedule is already optimized in both cases and the difference is only affected by the bidding15

strategy. However, note that the absolute numbers in this case study are several hundred16

thousand e production cost per week. Therefore, the bidding strategy has a significant effect17

on the absolute cost and it is highly attractive to solve for the optimal strategy. Thus, a18

third advantage of our MINLP-formulation over explicit enumeration is its ability to reliably19

identify the optimal solution early in the algorithm. Particularly for the setups with B = 3,20

where the MINLP-formulation can take more time to terminate with proven optimality than21

explicit enumeration, it is important to note that the MINLP-formulation finds the optimal22

solution reliably in less than a second.23

As the results presented in (Schäfer et al., 2019b) used a very tight relative optimality24

gap of 10−5, we compared the performance of our approach to the explicit enumeration for25

this tight tolerance as well. Except once, we found exactly the same solutions with the two26

approaches, with our approach being more efficient for all but some setups with B = 3. In27
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one of these setups, the MINLP approach did not converge to a relative optimality gap of1

10−5 within 4 CPU-hours. As discussed before, problem size and a potentially larger impact2

of tight tolerances on the runtime to solve one large MINLP than on the runtime to solve3

many smaller NLPs are possible explanations for the degradation of MINLP performance4

compared to explicit enumeration.5

6 Conclusion6

Based on BD, we developed a reformulation of the problem of simultaneous optimization7

of bidding strategy in pay-as-bid markets and production scheduling that enables the solution8

with general-purpose MINLP solvers. A case study on the German primary balancing market9

and the German day-ahead-market of 2018 showed that the reformulation enables reductions10

of the computational runtimes to find and proof a globally optimal solution, often to a third11

or less of the time an explicit enumeration scheme takes. Further algorithmic advantages12

enabled by our reformulation are that optimal solutions are identified quickly and inherently13

come with an optimality gap as soon as they are identified with branch-and-bound-based14

algorithms.15

The reformulation we presented is applicable in all pay-as-bid markets. Examples for such16

markets from 2021 are the secondary and tertiary balancing market in Germany, also known17

as automatic Frequency Restoration Reserve and manual Frequency Restoration Reserve.18

In pay-as-cleared market the optimal bidding strategy is simpler to identify without solving19

optimization problems of the kind we discussed: Setting an ask price equal to the marginal20

cost of providing balancing capacity for the process always generates the optimal revenue21

from a pay-as-cleared market for a price-taking market participant.22
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P. Schäfer. Challenges in process optimization for new feedstocks and energy sources.23

Computers & Chemical Engineering, 113:209–221, 2018.24

26



M. Nizami, M. Hossain, B. R. Amin, and E. Fernandez. A residential energy management1

system with bi-level optimization-based bidding strategy for day-ahead bi-directional elec-2

tricity trading. Applied Energy, 261:114322, 2020.3

J. I. Otashu and M. Baldea. Grid-level “battery” operation of chemical processes and4

demand-side participation in short-term electricity markets. Applied Energy, 220:562–575,5

2018.6

J. I. Otashu and M. Baldea. Demand response-oriented dynamic modeling and operational7

optimization of membrane-based chlor-alkali plants. Computers & Chemical Engineering,8

121:396–408, 2019.9

S. Ø. Ottesen, A. Tomasgard, and S.-E. Fleten. Multi market bidding strategies for demand10

side flexibility aggregators in electricity markets. Energy, 149:120–134, 2018.11

M. A. Plazas, A. J. Conejo, and F. J. Prieto. Multimarket optimal bidding for a power12

producer. IEEE Transactions on Power Systems, 20(4):2041–2050, 2005.13

R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. The Benders decomposition14

algorithm: A literature review. European Journal of Operational Research, 259(3):801–15

817, 2017.16

R. Raman and I. E. Grossmann. Relation between MILP modelling and logical inference for17

chemical process synthesis. Computers & Chemical Engineering, 15(2):73–84, 1991.18

D. Ramin, S. Spinelli, and A. Brusaferri. Demand-side management via optimal produc-19

tion scheduling in power-intensive industries: The case of metal casting process. Applied20

Energy, 225:622–636, 2018.21

H. Saberi, T. Amraee, C. Zhang, and Z. Y. Dong. A heuristic Benders-decomposition-based22

algorithm for transient stability constrained optimal power flow. Electric Power Systems23

Research, 185:106380, 2020.24

27



M. Sadat-Mohammadi, S. Asadi, M. Habibnezhad, and H. Jebelli. Robust scheduling of1

multi-chiller system with chilled-water storage under hourly electricity pricing. Energy2

and Buildings, 218:110058, 2020.3
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Table 1: Optimal Results for 1 to 3 maximum allowed bids B
B week explicit Enumeration general-purpose MINLP

1

1
optimal expected cost 237 ke 237 ke

PPRL
1 and A1 7 MW, 3623 e/MW 6 MW, 3597 e/MW

2
optimal expected cost 516 ke 516 ke

PPRL
1 and A1 10 MW, 3005 e/MW 10 MW, 3005 e/MW

3
optimal expected cost 454 ke 454 ke

PPRL
1 and A1 10 MW, 2665 e/MW 10 MW, 2665 e/MW

4
optimal expected cost 427 ke 427 ke

PPRL
1 and A1 6 MW, 2420 e/MW 6 MW, 2420 e/MW

2

1
optimal expected cost 237 ke 237 ke

PPRL
1 and A1 5 MW, 3574 e/MW 5 MW, 3574 e/MW

PPRL
2 and A2 3 MW, 3891 e/MW 4 MW, 3965 e/MW

2
optimal expected cost 516 ke 516 ke

PPRL
1 and A1 6 MW, 2968 e/MW 6 MW, 2968 e/MW

PPRL
2 and A2 4 MW, 3094 e/MW 4 MW, 3094 e/MW

3
optimal expected cost 454 ke 454 ke

PPRL
1 and A1 7 MW, 2631 e/MW 8 MW, 2641 e/MW

PPRL
2 and A2 3 MW, 2824 e/MW 2 MW, 2866 e/MW

4
optimal expected cost 427 ke 427 ke

PPRL
1 and A1 5 MW, 2403 e/MW 6 MW, 2420 e/MW

PPRL
2 and A2 2 MW, 2627 e/MW 1 MW, 2692 e/MW

3

1
optimal expected cost 236 ke 237 ke

PPRL
1 and A1 4 MW, 3554 e/MW 4 MW, 3554 e/MW

PPRL
2 and A2 3 MW, 3773 e/MW 3 MW, 3773 e/MW

PPRL
3 and A3 2 MW, 4140 e/MW 3 MW, 4240 e/MW

2
optimal expected cost 516 ke 516 ke

PPRL
1 and A1 5 MW, 2960 e/MW 0 MW, 2976 e/MW

PPRL
2 and A2 3 MW, 3042 e/MW 7 MW, 2976 e/MW

PPRL
3 and A3 2 MW, 3142 e/MW 3 MW, 3116 e/MW

3
optimal expected cost 454 ke 454 ke

PPRL
1 and A1 5 MW, 2613 e/MW 7 MW, 2631 e/MW

PPRL
2 and A2 3 MW, 2713 e/MW 0 MW, 2631 e/MW

PPRL
3 and A3 2 MW, 2866 e/MW 3 MW, 2824 e/MW

4
optimal expected cost 427 ke 427 ke

PPRL
1 and A1 4 MW, 2388 e/MW 6 MW, 2420 e/MW

PPRL
2 and A2 2 MW, 2529 e/MW 0 MW, 2420 e/MW

PPRL
3 and A3 2 MW, 2770 e/MW 1 MW, 2692 e/MW
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Table 2: Runtimes of Explicit Enumeration and Benders Decomposition

B week
solution time

expl. Enum. [in s]
solution time
MINLP [in s]

time until BARON identifies
optimal MINLP-solution [in s]

1

1 11 2.8 0.19
2 10 1.3 0.14*
3 10 2.1 0.25
4 10 1.9 0.14

2

1 94 25 0.19
2 86 19 0.20*
3 79 13 0.20*
4 80 15 0.22*

3

1 898 3076 0.34
2 719 206 0.31*
3 673 701 0.28*
4 503 794 0.42*

The star (∗) marks cases in which BARON already identifies the optimal
solution during preprocessing.
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