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Abstract

Solving the optimal power flow problem in a cooperative way between power gener-

ators and industrial users can reduce electricity costs more effectively than price-based

demand side management. In previous work, we recently developed a decomposition-

based algorithm based on Benders-type cuts to solve cooperative optimal power flow
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problems, which allows to protect sensitive load information. However, the algorithm

suffers from unfavorable scaling behavior when the number of cooperating load entities

increases. Herein, we improve the quality of the cutting planes that cooperating elec-

tricity users generate for the grid in lieu of sharing their dynamic process models. After

comparing different cutting strategies and combinations thereof, we develop a tailored

cutting strategy. This strategy improves the scaling behavior of our decomposition-

based algorithm with multiple cooperating electricity user locations drastically. We

obtain speedups factors up to almost 60 compared to our algorithm with the initial

cutting strategy.

keywords: demand-side management; cooperative optimal power flow; congestion manage-

ment; cutting plane algorithm

1 Introduction

The operation of the power grid is nowadays subject to uncertainty from both the demand

and generation sides, the latter driven by a rapidly increasing contribution of (inherently time

variable) renewable resources (such as wind and solar photovoltaics) to the power generation

mix. Increasing the flexibility of the demand side of the grid becomes essential in ensuring

that power supply and demand are balanced at all times. The umbrella term demand side

management (DSM) refers to all activities that alter (most likely, temporally shift) electrical

power demand with the goal of aligning supply and demand, particularly at times when the

latter is at its peak (Baldea, 2017; Zhang and Grossmann, 2016).

Industrial electricity users are well-suited for engaging in such initiatives. Their loads are

large, localized, and often flexible. A broad variety of manufacturing processes are considered

applicable for DSM (Palensky and Dietrich, 2011): chlor-alkali processes (Hoffmann et al.,

2020; Roh et al., 2019; Otashu and Baldea, 2019) – which we also consider in this article –,

air separation (Ierapetritou et al., 2002; Zhang et al., 2015; Caspari et al., 2019; Tsay et al.,

2019), aluminum electrolysis (Todd et al., 2008; Zhang and Hug, 2015), cement milling
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(Summerbell et al., 2017; Spangenberg et al., 2015), steel production (Hadera et al., 2015;

Castro et al., 2013, 2020), and glass production (Seo et al., 2020) are some examples.

However, the vast majority of DSM literature assumes electricity prices as given and

known with reasonable accuracy, and the proposed approaches focus on modulating the

operation of the industrial entity to exploit patterns in these prices. Assuming that users

are purely price takers does not constitute a true cooperation between grid operators and

energy-intensive processes that can have beneficial effects for both of them. In particular,

electricity grid operators have to make assumptions about user demand in order to plan their

generation. If the electricity prices result from such an assumption-based plan, beneficial

effects of cooperation can not influence the prices. To deal with imprecisions in the assumed

demand, grid operators have to allocate balancing reserves. An example for an undesired

second-order effect of price-based DSM is the formation of rebound peaks in electricity

demand (McAuliffe and Rosenfeld, 2004; Li et al., 2012).

With the aim of exploring the benefits of managing electricity generation, transmission

and demand in close cooperation between grid operators and (large) electricity users (partic-

ularly, industrial facilities), we recently presented the concept of cooperative optimal power

flow (OPF) (Otashu et al., 2021). Broadly speaking, it consists of ceding operational control

of the facility to the grid operators. The latter are allowed to determine the production

schedule of flexible industrial processes in a way that minimizes operating cost for the grid.

In our initial effort (Otashu et al., 2021), letting the grid decide the production schedule re-

quired the cooperating industrial user to reveal a dynamic model of its operation to the grid,

which raised a confidentiality issue. With follow-up work (Varelmann et al., 2021), inspired

by the concept of Benders Decomposition (Benders, 1962) (BD), we proposed replacing the

exchange of such confidential information between grid and cooperating processes with the

exchange of temporal power demand profile definitions via cutting planes that only reflect

information in the space of (time dependent) power profiles. In this way, we were able to

reproduce our previous results (Otashu et al., 2021) by iteratively refining an outer approx-
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imation of the region of power profiles that allow feasible operation of a chlor-alkali process

in the power grid.

A remaining challenge with our decomposition-based approach is the unfavorable scaling

behavior of the algorithm with the number of buses with cooperating loads (Varelmann et al.,

2021). The significant increase in computational effort reported in our article (Varelmann

et al., 2021) made the algorithm impractical for real-time use in large system instances. In

this article, we revisit our strategy to compute the feasibility cuts that refine the aforemen-

tioned outer approximation of the region of power profiles. As a consequence of a more

effective cutting strategy, the scaling behavior of the algorithm improves as well, such that

it does not impede on practical implementations.

The broad applicability and success of BD has led to a plethora of improvements to

virtually all aspects of the original algorithm (Benders, 1962). An early improvement to

the cutting plane generation process was presented by Magnanti and Wong (1981). They

introduced the notion of Pareto-optimal cuts and exploited useful properties of core-points

of the feasible region of LPs. Papadakos (2008) simplified their approach later on by showing

that just one optimization problem has to be solved in the subproblem stage to generate a

Pareto-optimal cut. Gleeson and Ryan (1990) have shown that an alternative polyhedron

can be used to select cuts corresponding to a minimal infeasible subsystem. This increases

the effectiveness of feasibility cuts and thus reduces the number of required cuts. A unified

treatment of feasibility cuts and optimality cuts is presented by Fischetti et al. (Fischetti

et al., 2010).

Although we have not yet considered mixed-integer cooperative OPF problems, mixed-

integer programming was the driving field for numerous contributions regarding cutting plane

selection strategies. Balas (1998, 1979) was among the first to study the implications of ge-

ometric properties of polyhedra in disjunctive programming. McDaniel and Devine (1977)

set the ground for the development of BD as branch-and-cut algorithm for mixed-integer

problems. Many more recent articles emphasize the importance of high-density cuts (Sa-
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haridis et al., 2010; Sherali and Lunday, 2013; Tang et al., 2013; Azad et al., 2013; Saharidis

and Ierapetritou, 2013) to generate more effective cuts and thus reduce computational effort.

Another recent development is special cuts that are useful in the root node (Rahmaniani

et al., 2020) to the point where no branch-and-bound tree is required because the root node

converges to the optimal integer solution. In particular, for feasibility cuts, normalizations

of the unbounded dual problem corresponding to an infeasible primal problem occupy a key

role (Balas and Perregaard, 2002; Fischetti et al., 2011). In the field of disjunctive pro-

gramming, Cornuéjols and Lemaréchal (2006) have theoretically found a way to compute

facet-defining cuts, an efficient algorithm to do so was recently presented by Conforti and

Wolsey (2019). They have developed a method that generates feasibility cuts that almost

surely define a facet or an improper face of the true feasible region that is approximated

in the master problem (Conforti and Wolsey, 2019). The dissertation of Stursberg (2019)

puts this method into the context of the work of Fischetti et al. (2010) and Cornuéjols and

Lemaréchal (2006). Conforti and Wolsey’s method was also adopted in the CPLEX BD

feature (Bonami et al., 2020) and will be central in this article as well.

Applications of BD in contexts similar to ours can also be found in the literature. One

example are security-constrained OPF problems (Monticelli et al., 1987; Wang et al., 2016).

Another example is expansion location planning while considering the effects of DSM options

(Jenabi et al., 2015).

2 Cutting Planes for Cooperative Optimal Power Flow

Calculations

In our previous work (Varelmann et al., 2021), we introduced the use of BD to compute

a cooperative OPF solution without the need to share detailed process models between

plant operators and the grid. This section briefly describes some relevant components of

our algorithm; for more details, we refer to our previous article (Varelmann et al., 2021).
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We treat the grid as the master problem and cooperating processes as subproblems, whose

models should not be shared with (and are unknown to) the grid for confidentiality reasons.

Initially, the only constraints for the power demand of each cooperating process in each time

interval that are present in the grid are box constraints. We refer to the power demand at

all time intervals of a given process as its power profile. The box constraints for the power

profiles of cooperating electricity users are a crude outer approximation of the feasible region

of power profiles for a cooperating electricity user. In our algorithm, the master problem

solves optimal power flow problems, treating the power profiles of cooperating processes as

decision variables subject to the current outer approximation of their feasible region.

The power profiles computed this way are then sent to the subproblems as a suggestion

for a power profile. The suggestions are likely infeasible, because they only obey constraints

representing an outer approximation of the true feasible region of power profiles. Each

subproblem that received an infeasible power profile suggestion returns a cut that separates

the suggested power profile from the outer approximation of the feasible region of power

profiles in the master problem. Thus, each cut refines this outer approximation.

The master problem that represents the electricity grid can be written as (Varelmann
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et al., 2021):

min
pgen,T,θ,pload, coop

∑
i∈ΩBus

H∑
t=1

Fi(p
gen
i,t ) (1a)

s.t.

pgeni,t −
(
pload, fix
i,t + pload, coop

i,t

)
=
∑
j∈Ωi

l

T(i,j),t, ∀ i ∈ ΩBus, t ∈ {1, · · · , H},

(1b)

T(i,j),t = β · Si,j(θj,t − θi,t), ∀(i, j) ∈ Ωl, t ∈ {1, · · · , H}, (1c)

Tmin
(i,j) ≤ T(i,j),t ≤ Tmax

(i,j) , ∀(i, j) ∈ Ωl, t ∈ {1, · · · , H}, (1d)

θmin
i ≤ θi,t ≤ θmax

i , ∀i ∈ ΩBus \ {slack bus}, t ∈ {1, · · · , H}, (1e)

θslack bus,t = 0 ∀t ∈ {1, · · · , H}, (1f)

pgen, min ≤ pgent ≤ pgen, max ∀t ∈ {1, · · · , H}, (1g)

pgent − pgent−1 ≤ pgen, ramp up ·∆t ∀t ∈ {1, · · · , H}, (1h)

pgent − pgent−1 ≥ −pgen, ramp down ·∆t ∀t ∈ {1, · · · , H}, (1i)

pload, coop
i,t ∈ [plb, pub], ∀i ∈ ΩBus, ∀t ∈ {1, · · · , H}, (1j)

H∑
t=1

λc,coupt · pload, coop
i,t ≥ λcᵀr ∀c ∈ {1, · · · ,# Cuts}. (1k)

where we consider a one day horizon with a 15-minute-interval discretization, so H = 96

(Varelmann et al., 2021). We index the set of buses ΩBus with i. On each bus, the total load

comprises fixed load pload, fix
i,t and cooperating load pload,coop

i,t (Varelmann et al., 2021). Ωi
l is

the set of buses connected to bus i via a transmission line, Ωl is the set of transmission lines,

and t denotes a time slot of duration ∆t (Varelmann et al., 2021). The decision variables are

the generation target levels of all generators in the grid, pgent ∈ RH×|ΩBus|; the power flow

between connected pairs of buses i and j, T ∈ RH×|Ωl|; and the bus angles with respect to the

slack bus in radians, θ ∈ RH×|ΩBus| (Varelmann et al., 2021). The Fi(·) are linear operating

cost functions of the generators, whose sum is minimized with the objective (1a) (Varelmann
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et al., 2021). Each ploadi,t is the power demand on a bus i in time slot t (Varelmann et al.,

2021). S is the circuit susceptance matrix with entries Si,j in pu (per unit on a base β = 100

MW) (Varelmann et al., 2021).

Should the master problem suggest feasible power profiles for all cooperating plants in

an iteration, the algorithm immediately terminates, as a feasible solution that is optimal for

the grid is found. This reflects our goal to minimize the cost for electricity generation and

transmission for the overall grid. Usually, this also reduces electricity costs for electricity

users, however, we can not guarantee reduced electricity costs on each bus, i.e., for each

electricity user. Also, we do not consider other potentially relevant kinds of operating costs

of cooperating processes, such as heating, cooling, or raw material costs in the current format

of the problem definition. As a consequence, the subproblems in our algorithm only return

feasibility cuts to react to infeasible power profile suggestions. It seems realistic that a

cooperation compensation mechanism could be implemented by extending the algorithm to

also use optimality cuts, but this has not yet been our focus, and will not be our focus in

this article.

In order to compute a cut from the solution of the subproblems in response to an infeasible

suggestion, we use a linear dynamic process model of the cooperating process. We use

a coupling equation to set the electrical power demand of the process to equal the power

profile suggested by the master problem, but allow for slacks in the assignment to the master

suggestion. The sum of all slacks is minimized as the objective of the subproblem, as is

commonly done in the literature (Birge and Louveaux, 2011). The complete subproblem can
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be formulated as (Varelmann et al., 2021):

min
x,u,p,s+,s−

H∑
t=1

s+
t + s−t , (2a)

s.t.

A

x
u
p

 ≥ b, (2b)

s+, s− ≥ 0, (2c)

pt = pload, coop
i,t + s+

t − s−t , ∀t ∈ {1, · · · , H}. (2d)

where s+ and s− are the vectors of slack variables s+
t and s−t in each time step (Varelmann

et al., 2021). Similarly, the process states, process inputs, and the power demands pt of the

process in all time intervals are gathered in the vectors x, u, and p (Varelmann et al., 2021).

In (2b), A and b form a reformulated representation of the state-space dynamic process

model used by Otashu et al. (2021) and Varelmann et al. (2021). The coupling equations

are (2d) (Varelmann et al., 2021). If any power profile for which the process operation is

feasible (i.e., the subproblem is feasible) exists, then problem (2) is feasible. From the dual

information of the solution of (2), a cut can be generated that cuts off the suggestion defined

by the pload, coop
i,t in the master problem. As this formulation minimizes the distance between

a feasible power profile and the suggestion from the master in the L1-norm, we will refer

to it as the L1-normalized subproblem, or short L1 subproblem. Also, we refer to the cuts

obtained from such subproblems as L1 cuts and we refer to the feasible power profiles p,

which is the sum of master suggestion and slacks, as L1 feasible points.

Finally, our algorithm relies on a heuristic termination criterion. As the master problem

has an outer approximation of the feasible region of power profiles for cooperating processes,

every solution of a master problem defines a lower bound on the optimal objective of the

cooperative OPF problem. Since we only refine the outer approximation of the feasible

region of power profiles for cooperating processes by adding cuts, i.e., restricting the feasible
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region of the overall master problem, this lower bound is monotonically increasing. On the

other hand, each subproblem solution defines a feasible power profile for the cooperating

process represented by the subproblem. This feasible power profile can be used to solve

a non-cooperative OPF problem, where the demand of the process is fixed to the feasible

power profile. The objective of such a non-cooperative OPF problem is an upper bound to

the optimal objective of the cooperative OPF problem (Varelmann et al., 2021). Thus, we

could compute an optimality gap in each iteration and terminate the algorithm once a user-

defined optimality gap is reached. However, computing the upper bound is a non-negligible

computational effort, as it involves the solution of a non-cooperative OPF problem.

Therefore, our heuristic is to only compute the upper bound when the subproblem so-

lutions have small objectives, which signals potential for an acceptable optimality gap. We

consider the subproblem solutions promising if the “feasibility-distance” specified by the sum

of the objectives of all subproblems is below a threshold that is changed adaptively over the

course of the iterations (Varelmann et al., 2021). Without this termination criterion, the

algorithm would have to converge the BD up to solver tolerance. This requires orders of

magnitude more iterations, is prone to numerical issues, and provides no significant further

cost improvements, as we described in our previous work (Varelmann et al., 2021). With

this criterion, we terminate the algorithm with a rigorously proven optimality gap, which

the user of the algorithm can select. In our previous work (Varelmann et al., 2021), we

recommended an optimality gap of 0.01%.

3 An Alternative Normalization of Infeasible Subprob-

lems to Generate Advanced Cuts

While the L1-normalization is common practice to compute feasibility cuts, it only guarantees

that the suggested solution from the master problem is cut off in the next iteration. There

are no farther-reaching guarantees for the overall quality of feasibility cuts obtained this

10



way. As an alternative, Conforti and Wolsey (2019) have developed a method to efficiently

compute feasibility cuts that come with stronger quality properties from linear cut-generating

problems. An important property of linear programs (LPs) is that their feasible region is

a convex polytope, i.e., an n-dimensional body bounded by n − 1-dimensional facets. The

method of Conforti and Wolsey (2019) computes cuts that almost surely define facets or

improper faces of the feasible region of the cut-generating linear problem with just one LP.

The basic idea is to specify a ray going from the master suggestion to a core point of the

feasible region of the cut-generating problem and finding the point where the ray crosses the

boundary of the feasible region. In the context of cooperative OPF problems, we adapt their

method to compute strong cuts to describe the feasible region of power profiles of cooperating

processes. As a natural core point, we use the power profile of nominal process operation,

where the power demand is constant over the entire time horizon.

The formulation of our subproblems inspired by the method of Conforti and Wolsey is:

min
x,u,p,λ

λ, (3a)

s.t.

A

x
u
p

 ≥ b, (3b)

0 ≤ λ ≤ 1, (3c)

pt = (1− λ) · pload, coop
i,t + λ · p0, ∀t ∈ {1, · · · , H}. (3d)

where λ describes how far the master suggestion has to be moved towards the nominal power

demand p0. To distinguish this subproblem, the cuts and feasible power profiles generated

from it from their counterpart generated with formulation (2), we refer to this formulation

as CW-normalized subproblem or CW subproblem, we refer to the cuts generated form such

subproblems as CW cuts, and we refer to feasible power profiles p as CW feasible points.

A CW feasible point is the convex combination of master suggestion and core point that is
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feasible and closest to the master suggestion.

4 Case Studies

4.1 Cooperative OPF with Concentrated and Distributed Coop-

erating Load

We compare the performance of our decoupled cooperative OPF algorithm with L1 subprob-

lems and CW subproblems with the case studies known from our previous works (Otashu

et al., 2021; Varelmann et al., 2021). As grid model, we use the IEEE reliability test system

24-bus network model (Soroudi, 2017). We consider two grid states: in a normal grid, the

full generation capacity is available, while in a congested grid, we removed the largest gener-

ator and drastically reduced the generation capacity of the second-largest generator, which

corresponds to a total loss of generation capacity of 24%. We examine the cutting strategies

with 71 MW concentrated on bus 5 and distributed along buses 5, 7, and 8, both in a normal

and in a congested grid. In Figure 1, we visualize the topology of the grid; the locations of

buses 5, 7, and 8; and the locations of the generators failing in the congested grid.

As cooperating process, we choose a chlor-alkali process, which is energy intensive but

has temporal flexibility in its production. Therefore, it is well-suited for DSM. In both (2b)

and (3b), we use a linearized version of the rigorous model presented by Otashu and Baldea

(Otashu and Baldea, 2019), which represents the process behavior sufficiently well for the

purposes of cooperative OPF (Otashu et al., 2021).

4.2 Examination of the Scaling Behavior with Multiple Cooper-

ating Loads

Later, we also study the scaling behavior with the number of buses with cooperating load

of a tailored cutting strategy in the IEEE 24-bus reliability test grid. In setup A, we place
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Figure 1: Modified IEEE 24 bus reliability test grid (Soroudi, 2017). We place concentrated
cooperating load of 71 MW on bus 5, and distributed the 71 MW of cooperating load along
buses 5, 7, and 8. Generators that are removed or reduced in a congested grid are marked
with a red cross. The total generation capacity reduction in a congested grid is 24% of the
normal generation capacity.
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cooperative loads on buses 5, 10, 9, and 19; in setup B we place cooperative loads on buses

7, 6, 10, and 16. These are the same scaling study setups we presented in our previous

article (Varelmann et al., 2021). Like we did there, we solve the cooperative OPF problem

with our decoupled algorithm with cooperating load only on the first bus of each setup,

followed by the first two buses, the first three buses, and all four buses. Each cooperating

load corresponds to half of the total load on the respective bus, as we did previously as well

(Varelmann et al., 2021). We study the scaling setups A and B in a normal and a congested

grid.

4.3 Computational Infrastructure

Our source code is written in C++ and uses Gurobi 9.5.0 as the LP-solver on a Linux

Machine with a AMD Ryzen Threadripper 2990WX 32-Core CPU with 2.20 GHz for each

core and 64 GB RAM. Our code and the obtained result data is available open-source

under the EPL 2.0 license on http://permalink.avt.rwth-aachen.de/?id=597385. To mimic a

distributed solution process as well as possible, we solve all subproblems in parallel threads

using modern C++ concurrency features.

5 The Benefits of CW-Normalization

5.1 Algorithmic Performance using L1-Normalization,

CW-Normalization and Hybrids

For our first analysis, we compare the performance of the following cutting strategies: only

using L1-normalized subproblems (which recomputes the results from our previous article

(Varelmann et al., 2021)), only using CW-normalized subproblems, using cuts from both

subproblems and feasible points from L1-subproblems to compute the optimality gap, and

using cuts from both subproblems and feasible points from CW-subproblems to compute the
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Table 1: Iterations Until Acceptable Relative Optimality Gap with Different Cutting Strate-
gies

Case Study
Setup

only L1
subproblems

only CW
subproblems

L1 and CW cuts,
L1 feasible points

L1 and CW cuts,
CW feasible points

5n 143 54 41 70
5c 166 67 51 74

578n 286 79 74 108
578c 492 149 96 152

optimality gap. We examine the performance of these strategies in terms of iterations and

runtime until an acceptable relative optimality gap of 0.01% can be guaranteed with the

concentrated cooperating load on bus 5 and the distributed cooperating load along buses

5, 7 and 8 for a grid in normal and congested state. As a short notation, we refer to the

concentrated setups as 5n and 5c, and to the distributed setups as 578n and 578c. The

iterations until termination with an acceptable relative optimality gap are given in Table 1,

the runtime until termination is visualized in Figure 2.

An analysis of Table 1 and Figure 2 allows several important conclusions: First, and

most striking is that CW cuts are substantially more effective than L1 cuts. Second, L1

subproblems also have their merit, as a comparison of the two strategies that use both cuts

reveals: The strategy using L1 feasible points to determine the current relative optimality

gap terminates perceptibly faster than the strategy using CW feasible points for this purpose,

although both methods use the same cuts. This is not surprising, because L1 feasible points

can be located in any direction from the master suggestion and will minimize the L1-distance

to the master suggestion, whereas CW feasible points have to lie on a specific ray from the

master suggestion towards the core point (which corresponds to nominal production here).

Third, a rather unexpected finding is that the strategy only using CW subproblems

outperforms the strategy using both kinds of cuts and CW feasible points. These two

strategies only differ in the absence or utilization of L1 cuts. In terms of both iterations

and runtime, the strategy only using CW subproblems consistently outperforms the strategy

that additionally uses L1 cuts. Our interpretation of the evidence that using L1 cuts leads

to larger computational effort is that L1 cuts can sometimes cut off regions from the master
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L1 only

CW only

both Cuts,
L1 feasible points

both Cuts,
CW feasible points

runtime until acceptable optimality gap [s]
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load distributed, congested grid

load distributed, normal grid
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Figure 2: Runtimes of our four case studies using different subproblem formulations. The
fastet strategy is ‘CW only’, followed by ‘both Cuts, L1 feasible points’. The ‘L1 only’
strategy used in (Varelmann et al., 2021) is clearly outperformed by all other strategies.

problem that – when suggested to a CW subproblem – would yield particularly useful CW

cuts. We conclude that – in the presence of CW cuts – L1 cuts have only minimal utility

and can in fact be harmful for the performance. Broadly translated, our findings indicate

cuts should exclusively be generated from CW subproblems, while L1 feasible points have a

smaller optimality gap than CW feasible points, so the former are preferred over the latter.

5.2 Tailored Single- and Multi-CW-Cut Strategies

Motivated by these findings, we propose two more strategies that are tailored to combine

the best properties from both kinds of subproblems: First, a single-cut strategy that only

uses cuts from CW subproblems, but solves an L1 subproblem to use an L1 feasible point
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in the non-cooperative OPF problem when the termination heuristic needs to compute an

upper bound. Second, we extend this strategy by a second CW cut in each iteration to get a

multi-cut strategy. To generate a second cut that can differ from the first in each iteration,

we solve the CW subproblem with a different core point. The only requirement on a core

point for the resulting CW-cut to be valid is that the core point must be a feasible power

profile. In particular, every convex combination between nominal production and the feasible

points obtained from a subproblem solution is a valid core point, because the feasible region

of power profiles is a convex region.

As we visualize in Figure 3, to generate a cut that differs from the first cut, we can not

use a convex combination of the feasible point from the first subproblem and the standard

core point. The reason is that the ray defined by the master suggestion and such a convex

combination would by construction be the same ray as in the first subproblem. Therefore, we

store the feasible point obtained from the first subproblem of the previous iteration and select

a convex combination between this feasible point and the point corresponding to nominal

production:

p0
i,(sec) = µ · pi−1 + (1− µ) · p0 (4)

where p0
i,(sec) is the core point of the second CW subproblem in iteration i, pi−1 is the feasible

point from the first CW subproblem in the previous iteration, and p0 is the standard core

point corresponding to nominal production.

The convex combination factor µ can in principle be chosen freely between 0 and 1.

For µ ≥ 0.995, we sometimes faced numerical infeasibilities of the resulting second CW

subproblem. Again, Figure 3 can explain why this happens: With values for µ close to 1,

we might aim at a tip of the true feasible set. Then, the part of the ray defined by master

suggestion and core point that corresponds to feasible power profiles vanishes numerically.

For µ ≤ 0.995, we did not have any such issues and the performance of the tailored multi-cut

strategy was largely insensitive to the value of µ, with best results for µ ∈ [0.95, 0.99]. We

therefore choose µ = 0.97 for this case study. Note that the second cut might yield a new
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current
master

suggestionprevious master
suggestion

nominal pro-

duction p0

p0
sec

p1
p 2

Figure 3: Geometry of core point selection of second CW subproblem of an iteration. We
construct a second core point p0

sec by a linear combination of p0 and the feasible point found
in the previous iteration on the solid red line. The secondary subproblem aims to find a
facet between the current master suggestion and p0

sec. In this case, the solid green facet is
identified without the need for an additional master iteration. However, the secondary cut
might in general also be a duplication of the primary cut in blue.

cut, but is not guaranteed to do so in every iteration.

In Table 2 and Figure 4, we present the required number of iterations and the runtime

from the two new strategies until an acceptable optimality gap is obtained. For an easier

comparison, we also repeat the results from the two best strategies of the previous section,

namely ‘CW only’ and ‘both cuts, L1 feasible points’ therein. We can see that our tailored

single-cut strategy takes comparably many iterations as the strategy using both cuts and

L1 feasible points. The strategy only using CW subproblems requires more iterations than

any other strategy shown in Table 2, as it is the only strategy using CW feasible points

to compute the optimality gap. The tailored multi-cut strategy reduced the number of

iterations required by around a third compared to the tailored single-cut strategy. This is

a good result and clearly the lowest number of required iterations any strategy has given.

Nevertheless, it also shows that the entirety of second cuts is less effective than the first cuts,

because for equally effective second cuts, we would have expected the number of iterations

to decrease by around 50 % rather than only around 33 %. However, we did expect that

sometimes, second cuts just duplicate the first cut, so we were not surprised by this finding.
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Table 2: Iterations Until Acceptable Relative Optimality Gap with Tailored Cutting Strate-
gies

Case Study
Setup

only CW
subproblems

L1 and CW cuts,
L1 feasible points

CW cuts, L1
feasible points

2 CW cuts/iteration,
L1 feasible points

5n 54 41 52 36
5c 67 51 50 35

578n 79 74 65 48
578c 149 96 105 63

The lowest runtimes are observed using our tailored strategies in all cases; sometimes the

‘CW only’ strategy is competitive. The tailored multi-cut strategy requires fewer iterations

than the tailored single-cut strategy. The former solves twice as many subproblems per

iteration. This additional computational effort only has a minor effect on the runtime of

each iteration, because we solve all subproblems in parallel. The only drawback of adding

two cuts per iteration is that the simplex basis we use to warm-start the master problem

has to be updated with respect to two cuts. Therefore, the multi-cut strategy often, but not

always, terminates earlier than the single-cut strategy in terms of runtime. We conclude that

the tailored multi-cut strategy works best in our case studies, but the single-cut strategy

and the CW-only strategy sometimes find an acceptable solution just as quickly.

5.3 Cooperative OPF Solutions of Tailored Strategies

The cooperative OPF solutions computed by our algorithm using the tailored cutting strate-

gies are similar to the solutions we found using L1 subproblems in our previous work (Varel-

mann et al., 2021). Using these three strategies, we compare the generation and transmission

costs for the grid in Table 3. It shows that the generation and transmission cost for the grid

is independent of the chosen strategy up to some tens of dollars. The same is true for the

electricity cost of the cooperating plant, which we report for the setups with concentrated

load in Table 4. We do not show the electricity cost for cooperating plants in the setups

with distributed loads, as they are independent of the chosen strategy as well.

As an example, we also visualize the final power profiles of the cooperating plant with

the resulting price profile for the setup with a concentrated cooperating load on bus 5 in a
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Figure 4: Runtime comparison of the two tailored CW strategies (at the top) to two promis-
ing strategies from before (at the bottom). We obtain the best performance with the tailored
multi-cut strategy. In some isolated setups, the performance of the tailored single-cut strat-
egy or the ‘CW only’ strategy are comparable.

normal grid. In Figure 5, we show that the choice of L1 subproblems, or our tailored single-,

or multi-cut strategies has (as it should) only minimal influence on the power profiles and

price profiles. In other words, the choice of cutting strategy has no impact on the economic

or dispatch results – neither cost for grid or plants, nor power power profiles or price profiles

–, it only affects how efficiently the results are computed.

20



Table 3: Cooperative Optimal Power Flow Costs With Different Strategies

Setup
concentrated load,

normal grid
concentrated load,

congested grid
distributed load,

normal grid
distributed load,
congested grid

optimal L1
objective [$] 1,804,476 1,816,380 1,804,489 1,818,665
optimal single-cut

objective [$] 1,804,472 1,816,325 1,804,468 1,818,627
optimal multi-cut

objective [$] 1,804,435 1,816,351 1,804,460 1,818,629

Table 4: Electricity Costs for Cooperating Plants With Different Strategies

Setup
concentrated load,

normal grid
concentrated load,

congested grid
L1 plant cost [$] 16,035 25,453
single-cut plant cost [$] 16,031 25,420
multi-cut plant cost [$] 16,054 25,404

5.4 Scaling Behavior of Decoupled Cooperative OPF Algorithm

with CW-Normalization

We repeat the analysis of the scaling behavior of our decoupled algorithm for cooperative

OPF problems with respect to multiple buses with cooperating loads from our previous

article (Varelmann et al., 2021) as described in Section 4. We use our tailored multi-cut

strategy as it performed best in the previous section. In Figure 6, we show the absolute

runtime until an acceptable solution is found, and also include the speedup with respect

to the strategy using only L1-normalized subproblems that we used previously (Varelmann

et al., 2021).

The new cutting strategy leads to a major improvement in the scaling behavior of our

algorithm. In our previous article (Varelmann et al., 2021), the trend was a rapidly increas-

ing runtime. Now, we can still see an increase in the runtime with additional buses with

cooperating loads, but this increase reflects the overall larger problem much better than

it used to. We can solve all problems with four buses with cooperating loads in less than

twenty seconds. Even more important for the scaling behavior than an overall reduction

in runtime is that the speedup relative to an L1 subproblem strategy is increasing as more

buses have cooperating load. This clearly shows that we have improved the scaling behavior

and not only reduced the overall runtime. For four buses with cooperating load, we achieve
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Figure 5: Comparison of price profiles and power profiles computed with different cutting
strategies. As expected, both tailored strategies reproduce the results from the L1 strategy
closely.

a speedup of almost a factor of 60. Thus, computing a cooperative OPF solution becomes

practically tractable for a larger number of cooperating load locations.

Encouraged by these results, we also tried to solve cooperative OPF problems with even

more buses with cooperating load. We solved problems where 6, 10, and all 17 load-buses

that are available in the IEEE 24-bus reliability test grid had cooperating loads corresponding

to half of the total load on that bus. For the setup with 6 buses with cooperating load, we

used buses 1, 2, 6, 7, 10, and 16; and for the setup with 10 buses with cooperating load, we

used buses 1, 2, 6, 7, 9, 10, 13, 16, 18, and 20. We ran all these problems in a normal and

a congested grid. The number of required iterations, and the runtime until an acceptable

solution with a relative optimality gap of 0.01 % was found are listed in Table 5. The results

increase our confidence that we have developed a practical method.

While studying problems with many buses with cooperating loads, we made another

interesting observation: The integrated cooperative OPF problem formulation that used

confidential dynamic process models (Otashu et al., 2021) is numerically difficult to solve as

soon as 4 or more buses with cooperating load exist. Even with Gurobi features such as the
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Figure 6: Improved scaling behavior of our tailored multi-cut strategy with respect to co-
operating end-users on multiple buses. The left plot visualizes the total runtime with our
tailored multi-cut strategy and the right plot shows the speedup of this strategy compared
to only using L1 cuts as we did in our previous work (Varelmann et al., 2021).

‘NumericalFocus’ parameter set to the maximum value, we could not solve the integrated

problem for some setups with 4 buses with cooperating load and all setups with 6 buses with

cooperating load, we did not try for 10 or 17 buses. In contrast, our decomposition-based

algorithm shows numerical issues for the first time when using 17 buses with cooperating load

in a congested grid. They could be circumvented by setting the ‘NumericalFocus’ parameter

to the maximum value. The range of matrix coefficients in master and subproblems is several

orders of magnitude smaller than the range of coefficients in the integrated problem after

Table 5: Performance of the multi-cut strategy
for a large number of buses with cooperating
load

Setup Iterations Runtime [s]
6 buses, normal grid 137 35
6 buses, normal grid 91 24
10 buses, normal grid 127 99
10 buses, normal grid 295 458
17 (all) buses, normal grid 230 758
17 (all) buses, normal grid 231 2879*

∗ With cooperating load on all buses, we had to set
Gurobi’s ‘NumericalFocus’ option to 3 because of nu-
merical issues. This lets Gurobi use quadruple pre-
cision and sets other settings to particularly careful
values – at the expense of maximum performance.
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decomposing the problem to grid and cooperating processes.

6 Conclusions

We have applied the method to generate facet-defining cuts presented by Conforti and Wolsey

(2019) to our BD-based algorithm to compute cooperative OPF solutions and compared sev-

eral combinations of subproblem usages in our algorithm. The comparison results motivated

the development of tailored strategies using CW-normalized subproblems to generate one or

more cuts per iteration and L1-normalized subproblems to find feasible points that provide a

good upper bound. In our case studies, we could confirm that our tailored strategies perform

better than all the strategies contained in our initial comparison. Finally, we examined the

scaling behavior of our tailored multi-cut strategy with respect to a growing number of buses

with cooperating load in the grid. We showed that with the multi-cut strategy we developed,

the computational effort only increases moderately with the number of buses with cooper-

ating load. In combination with the overall better performance, our decoupled algorithm

to solve cooperative OPF problems exhibits a performance that enables practical usage. A

remaining challenge for the concept of cooperative optimal power flow computations remains

that it is unclear how to guarantee a fair compensation for all cooperating participants –

either as reduced operating cost or monetary compensation.
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A. Caspari, C. Offermanns, P. Schäfer, A. Mhamdi, and A. Mitsos. A flexible air separation

process: 2. Optimal operation using economic model predictive control. AIChE Journal,

65(11):e16721, 2019. doi: 10.1002/aic.16721.

25



P. M. Castro, L. Sun, and I. Harjunkoski. Resource–task network formulations for industrial

demand side management of a steel plant. Industrial & Engineering Chemistry Research,

52(36):13046–13058, 2013. doi: 10.1021/ie401044q.

P. M. Castro, G. Dalle Ave, S. Engell, I. E. Grossmann, and I. Harjunkoski. Industrial de-

mand side management of a steel plant considering alternative power modes and electrode

replacement. Industrial & Engineering Chemistry Research, 59(30):13642–13656, 2020.

doi: 10.1021/acs.iecr.0c01714.

M. Conforti and L. A. Wolsey. “Facet” separation with one linear program. Mathematical

Programming, 178(1):361–380, 2019. doi: 10.1007/s10107-018-1299-8.
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