000905800 001__ 905800
000905800 005__ 20240709082053.0
000905800 0247_ $$2doi$$a10.1016/j.ijhydene.2021.12.225
000905800 0247_ $$2ISSN$$a0360-3199
000905800 0247_ $$2ISSN$$a1879-3487
000905800 0247_ $$2Handle$$a2128/30727
000905800 0247_ $$2WOS$$aWOS:000768763300001
000905800 037__ $$aFZJ-2022-01020
000905800 082__ $$a620
000905800 1001_ $$0P:(DE-HGF)0$$aCooper, Nathanial$$b0$$eCorresponding author
000905800 245__ $$aA framework for the design & operation of a large-scale wind-powered hydrogen electrolyzer hub
000905800 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000905800 3367_ $$2DRIVER$$aarticle
000905800 3367_ $$2DataCite$$aOutput Types/Journal article
000905800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645102699_26187
000905800 3367_ $$2BibTeX$$aARTICLE
000905800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905800 3367_ $$00$$2EndNote$$aJournal Article
000905800 520__ $$aDue to the threat of climate change, renewable feedstocks & alternative energy carriers are becoming more necessary than ever. One key vector is hydrogen, which can fulfil these roles and is a renewable resource when split from water using renewable electricity. Electrolyzers are often not designed for variable operation, such as power from sources like wind or solar. This work develops a framework to optimize the design and operation of a large-scale electrolyzer hub under variable power supply. The framework is a two-part optimization, where designs of repeated, modular units are optimized, then the entire system is optimized based on those modular units. The framework is tested using a case study of an electrolyzer hub powered by a Dutch wind farm to minimize the levelized cost of hydrogen. To understand how the optimal design changes, three power profiles are examined, including a steady power supply, a representative wind farm power supply, and the same wind farm power supply compressed in time. The work finds the compressed power profile uses PEM technology which can ramp up and down more quickly. The framework determines for this case study, pressurized alkaline electrolyzers with large stacks are the cheapest modular unit, and while a steady power profile resulted in the cheapest hydrogen, costing 4.73 €/kg, the typical wind power profile only raised the levelized cost by 2%–4.82 €/kg. This framework is useful for designing large-scale electrolysis plants and understanding the impact of specific design choices on the performance of a plant.
000905800 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000905800 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905800 7001_ $$0P:(DE-HGF)0$$aHorend, Christian$$b1
000905800 7001_ $$0P:(DE-Juel1)174028$$aRöben, Fritz$$b2$$ufzj
000905800 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$ufzj
000905800 7001_ $$0P:(DE-HGF)0$$aShah, Nilay$$b4
000905800 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.12.225$$gp. S0360319921050278$$n14$$p8671-8686$$tInternational journal of hydrogen energy$$v47$$x0360-3199$$y2022
000905800 8564_ $$uhttps://juser.fz-juelich.de/record/905800/files/Revised%20Framework%20DO%20of%20large%20electrolyzer%20-%20no%20markup.pdf$$yPublished on 2022-01-13. Available in OpenAccess from 2024-01-13.
000905800 909CO $$ooai:juser.fz-juelich.de:905800$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905800 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Imperial College London$$b0
000905800 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000905800 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Imperial College London$$b1
000905800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174028$$aForschungszentrum Jülich$$b2$$kFZJ
000905800 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b3
000905800 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Imperial College London$$b4
000905800 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000905800 9141_ $$y2022
000905800 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000905800 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000905800 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905800 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000905800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2021$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-29
000905800 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HYDROGEN ENERG : 2021$$d2022-11-29
000905800 920__ $$lyes
000905800 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000905800 9801_ $$aFullTexts
000905800 980__ $$ajournal
000905800 980__ $$aVDB
000905800 980__ $$aUNRESTRICTED
000905800 980__ $$aI:(DE-Juel1)IEK-10-20170217
000905800 981__ $$aI:(DE-Juel1)ICE-1-20170217