001     905800
005     20240709082053.0
024 7 _ |a 10.1016/j.ijhydene.2021.12.225
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/30727
|2 Handle
024 7 _ |a WOS:000768763300001
|2 WOS
037 _ _ |a FZJ-2022-01020
082 _ _ |a 620
100 1 _ |a Cooper, Nathanial
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A framework for the design & operation of a large-scale wind-powered hydrogen electrolyzer hub
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645102699_26187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to the threat of climate change, renewable feedstocks & alternative energy carriers are becoming more necessary than ever. One key vector is hydrogen, which can fulfil these roles and is a renewable resource when split from water using renewable electricity. Electrolyzers are often not designed for variable operation, such as power from sources like wind or solar. This work develops a framework to optimize the design and operation of a large-scale electrolyzer hub under variable power supply. The framework is a two-part optimization, where designs of repeated, modular units are optimized, then the entire system is optimized based on those modular units. The framework is tested using a case study of an electrolyzer hub powered by a Dutch wind farm to minimize the levelized cost of hydrogen. To understand how the optimal design changes, three power profiles are examined, including a steady power supply, a representative wind farm power supply, and the same wind farm power supply compressed in time. The work finds the compressed power profile uses PEM technology which can ramp up and down more quickly. The framework determines for this case study, pressurized alkaline electrolyzers with large stacks are the cheapest modular unit, and while a steady power profile resulted in the cheapest hydrogen, costing 4.73 €/kg, the typical wind power profile only raised the levelized cost by 2%–4.82 €/kg. This framework is useful for designing large-scale electrolysis plants and understanding the impact of specific design choices on the performance of a plant.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Horend, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Röben, Fritz
|0 P:(DE-Juel1)174028
|b 2
|u fzj
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|u fzj
700 1 _ |a Shah, Nilay
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.ijhydene.2021.12.225
|g p. S0360319921050278
|0 PERI:(DE-600)1484487-4
|n 14
|p 8671-8686
|t International journal of hydrogen energy
|v 47
|y 2022
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/905800/files/Revised%20Framework%20DO%20of%20large%20electrolyzer%20-%20no%20markup.pdf
|y Published on 2022-01-13. Available in OpenAccess from 2024-01-13.
909 C O |o oai:juser.fz-juelich.de:905800
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Imperial College London
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Imperial College London
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174028
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a Imperial College London
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J HYDROGEN ENERG : 2021
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21