001     905801
005     20240712112911.0
024 7 _ |a 10.1109/TITS.2021.3131298
|2 doi
024 7 _ |a 1524-9050
|2 ISSN
024 7 _ |a 1558-0016
|2 ISSN
024 7 _ |a 2128/31847
|2 Handle
024 7 _ |a WOS:000732220300001
|2 WOS
037 _ _ |a FZJ-2022-01021
082 _ _ |a 620
100 1 _ |a Caspari, Adrian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded
260 _ _ |a New York, NY
|c 2022
|b Inst. of Electrical and Electronics Engineers
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1663233983_4692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fahr, Steffen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/TITS.2021.3131298
|g p. 1 - 17
|0 PERI:(DE-600)2034300-0
|n 9
|p 14632 - 14648
|t IEEE transactions on intelligent transportation systems
|v 23
|y 2022
|x 1524-9050
856 4 _ |u https://juser.fz-juelich.de/record/905801/files/Optimal_Eco-Routing_for_Hybrid_Vehicles_With_Powertrain_Model_Embedded.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/905801/files/mitsos_21_ecorouting_postreferee.pdf
909 C O |o oai:juser.fz-juelich.de:905801
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T INTELL TRANSP : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T INTELL TRANSP : 2021
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21