000905803 001__ 905803
000905803 005__ 20240712112856.0
000905803 0247_ $$2doi$$a10.1007/s11081-021-09694-0
000905803 0247_ $$2ISSN$$a1389-4420
000905803 0247_ $$2ISSN$$a1573-2924
000905803 0247_ $$2Handle$$a2128/34028
000905803 0247_ $$2WOS$$aWOS:000743401700001
000905803 037__ $$aFZJ-2022-01023
000905803 082__ $$a690
000905803 1001_ $$0P:(DE-HGF)0$$aLeenders, Ludger$$b0
000905803 245__ $$aBilevel optimization for joint scheduling of production and energy systems
000905803 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2023
000905803 3367_ $$2DRIVER$$aarticle
000905803 3367_ $$2DataCite$$aOutput Types/Journal article
000905803 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677562047_13022
000905803 3367_ $$2BibTeX$$aARTICLE
000905803 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905803 3367_ $$00$$2EndNote$$aJournal Article
000905803 520__ $$aEnergy-intensive production sites are often supplied with energy by on-site energy systems. Commonly, the scheduling of the systems is performed sequentially, starting with the scheduling of the production system. Often, the on-site energy system is operated by a different company than the production system. In consequence, the production and the energy system schedule their operation towards misaligned objectives leading in general to suboptimal schedules for both systems. To reflect the independent optimization with misaligned objectives, the scheduling problem of the production system can be formulated as a bilevel problem. We formulate the bilevel problem with mixed-integer decision variables in the upper and the lower level, and propose an algorithm to solve this bilevel problem based on the deterministic and global algorithm by Djelassi, Glass and Mitsos (J Glob Optim 75:341–392, 2019. https://doi.org/10.1007/s10898-019-00764-3) for bilevel problems with coupling equality constraints. The algorithm works by discretizing the independent lower-level variables. In the scheduling problem considered herein, the only coupling equality constraints are energy balances in the lower level. Since an intuitive distinction is missing between dependent and independent variables, we specialize the algorithm and add a procedure to identify independent variables to be discretized. Thereby, we preserve convergence guarantees. The performance of the algorithm is demonstrated in two case studies. In the case studies, the production system favors different technologies for the energy supply than the energy system. By solving the bilevel problem, the production system identifies an energy demand, which leads to minimal cost. Additionally, we demonstrate the benefits of solving the bilevel problem instead of solving the common integrated or sequential problem.
000905803 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000905803 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905803 7001_ $$0P:(DE-HGF)0$$aHagedorn, Dörthe Franzisca$$b1
000905803 7001_ $$0P:(DE-HGF)0$$aDjelassi, Hatim$$b2
000905803 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$ufzj
000905803 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b4$$eCorresponding author$$ufzj
000905803 773__ $$0PERI:(DE-600)2018576-5$$a10.1007/s11081-021-09694-0$$p499-537$$tOptimization and engineering$$v24$$x1389-4420$$y2023
000905803 8564_ $$uhttps://juser.fz-juelich.de/record/905803/files/s11081-021-09694-0.pdf$$yOpenAccess
000905803 909CO $$ooai:juser.fz-juelich.de:905803$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905803 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b0
000905803 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000905803 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000905803 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000905803 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000905803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000905803 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b3
000905803 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b4$$kRWTH
000905803 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b4$$kFZJ
000905803 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000905803 9141_ $$y2023
000905803 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905803 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000905803 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-26$$wger
000905803 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905803 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000905803 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
000905803 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPTIM ENG : 2022$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000905803 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000905803 920__ $$lyes
000905803 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000905803 9801_ $$aFullTexts
000905803 980__ $$ajournal
000905803 980__ $$aVDB
000905803 980__ $$aUNRESTRICTED
000905803 980__ $$aI:(DE-Juel1)IEK-10-20170217
000905803 981__ $$aI:(DE-Juel1)ICE-1-20170217