001     905803
005     20240712112856.0
024 7 _ |a 10.1007/s11081-021-09694-0
|2 doi
024 7 _ |a 1389-4420
|2 ISSN
024 7 _ |a 1573-2924
|2 ISSN
024 7 _ |a 2128/34028
|2 Handle
024 7 _ |a WOS:000743401700001
|2 WOS
037 _ _ |a FZJ-2022-01023
082 _ _ |a 690
100 1 _ |a Leenders, Ludger
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Bilevel optimization for joint scheduling of production and energy systems
260 _ _ |a Dordrecht [u.a.]
|c 2023
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677562047_13022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy-intensive production sites are often supplied with energy by on-site energy systems. Commonly, the scheduling of the systems is performed sequentially, starting with the scheduling of the production system. Often, the on-site energy system is operated by a different company than the production system. In consequence, the production and the energy system schedule their operation towards misaligned objectives leading in general to suboptimal schedules for both systems. To reflect the independent optimization with misaligned objectives, the scheduling problem of the production system can be formulated as a bilevel problem. We formulate the bilevel problem with mixed-integer decision variables in the upper and the lower level, and propose an algorithm to solve this bilevel problem based on the deterministic and global algorithm by Djelassi, Glass and Mitsos (J Glob Optim 75:341–392, 2019. https://doi.org/10.1007/s10898-019-00764-3) for bilevel problems with coupling equality constraints. The algorithm works by discretizing the independent lower-level variables. In the scheduling problem considered herein, the only coupling equality constraints are energy balances in the lower level. Since an intuitive distinction is missing between dependent and independent variables, we specialize the algorithm and add a procedure to identify independent variables to be discretized. Thereby, we preserve convergence guarantees. The performance of the algorithm is demonstrated in two case studies. In the case studies, the production system favors different technologies for the energy supply than the energy system. By solving the bilevel problem, the production system identifies an energy demand, which leads to minimal cost. Additionally, we demonstrate the benefits of solving the bilevel problem instead of solving the common integrated or sequential problem.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hagedorn, Dörthe Franzisca
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Djelassi, Hatim
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|u fzj
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1007/s11081-021-09694-0
|0 PERI:(DE-600)2018576-5
|p 499-537
|t Optimization and engineering
|v 24
|y 2023
|x 1389-4420
856 4 _ |u https://juser.fz-juelich.de/record/905803/files/s11081-021-09694-0.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905803
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPTIM ENG : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21