001     905813
005     20240712112857.0
024 7 _ |a 10.1109/AMPS50177.2021.9586042
|2 doi
024 7 _ |a WOS:000783741700030
|2 pmid
024 7 _ |a WOS:000783741700030
|2 WOS
037 _ _ |a FZJ-2022-01033
100 1 _ |a Carta, Daniele
|0 P:(DE-Juel1)186779
|b 0
|e Corresponding author
111 2 _ |a 2021 IEEE 11th International Workshop on Applied Measurements for Power Systems (AMPS)
|c Cagliari
|d 2021-09-29 - 2021-10-01
|w Italy
245 _ _ |a Performance Evaluation of a Missing Data Recovery Approach Based on Compressive Sensing
260 _ _ |c 2021
300 _ _ |a 1-6
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1643098175_6536
|2 PUB:(DE-HGF)
520 _ _ |a In this paper, a Compressive Sensing-based approach is proposed to recover missing data in time series signals. The presented technique is based on the combined application of two mathematical techniques: the Discrete Cosine Transform (DCT) and a $\ell_1$-minimization algorithm. The former allows representing the system under test with reference to a new sparse base, while the latter is one of the possible approaches to solve a Compressive Sensing problem, well-known for the capability of recovering undersampled sparse signals.After presenting the state of the art and the steps characterizing the proposed approach, the recovery performances are tested on real voltage and current Root Mean Square (rms) signals, stored on a database. In particular, the different impact on the recovery of random discontinuous values and wide missing signals is evaluated by means of the Mean Absolute Percentage Error (MAPE).
536 _ _ |a 1123 - Smart Areas and Research Platforms (POF4-112)
|0 G:(DE-HGF)POF4-1123
|c POF4-112
|f POF IV
|x 0
536 _ _ |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)
|0 G:(DE-HGF)POF4-1122
|c POF4-112
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 1
|u fzj
773 _ _ |a 10.1109/AMPS50177.2021.9586042
856 4 _ |u https://ieeexplore.ieee.org/abstract/document/9586042
856 4 _ |u https://juser.fz-juelich.de/record/905813/files/Performance_Evaluation_of_a_Missing_Data_Recovery_Approach_Based_on_Compressive_Sensing.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:905813
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186779
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1123
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1122
|x 1
914 1 _ |y 2021
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21