Home > Publications database > Coupled-channel approach to T c c + including three-body effects > print |
001 | 905852 | ||
005 | 20240610121011.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.105.014024 |2 doi |
024 | 7 | _ | |a 0556-2821 |2 ISSN |
024 | 7 | _ | |a 1089-4918 |2 ISSN |
024 | 7 | _ | |a 1538-4500 |2 ISSN |
024 | 7 | _ | |a 1550-2368 |2 ISSN |
024 | 7 | _ | |a 1550-7998 |2 ISSN |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a 2128/30922 |2 Handle |
024 | 7 | _ | |a altmetric:115820471 |2 altmetric |
024 | 7 | _ | |a WOS:000747425300003 |2 WOS |
037 | _ | _ | |a FZJ-2022-01059 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Du, Meng-Lin |0 0000-0002-7504-3107 |b 0 |e Corresponding author |
245 | _ | _ | |a Coupled-channel approach to T c c + including three-body effects |
260 | _ | _ | |a [S.l.] |c 2022 |b Soc. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2022-01-24 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2022-01-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1648453779_4719 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A coupled-channel approach is applied to the charged tetraquark state T+cc recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body D0D0π+ channel. Special attention is paid to the three-body dynamics in the T+cc due to the finite life time of the D∗. An approach to the T+cc is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D∗ mesons and the finite D∗ width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The D0D0 and D0D+ invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D∗D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T+cc is found to be close to unity, which implies that the T+cc is a hadronic molecule generated by the interactions in the D*+D0 and D*0D+ channels. Employing heavy-quark spin symmetry, an isoscalar D∗D∗ molecular partner of the T+cc with JP=1+ is predicted under the assumption that the DD∗−D∗D∗ coupled-channel effects can be neglected. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |x 0 |f POF IV |
536 | _ | _ | |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076) |0 G:(GEPRIS)196253076 |c 196253076 |x 1 |
542 | _ | _ | |i 2022-01-24 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Baru, Vadim |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Dong, Xiang-Kun |0 0000-0001-6392-7143 |b 2 |
700 | 1 | _ | |a Filin, Arseniy |0 0000-0002-7603-451X |b 3 |
700 | 1 | _ | |a Guo, Feng-Kun |0 0000-0002-2919-2064 |b 4 |
700 | 1 | _ | |a Hanhart, Christoph |0 P:(DE-Juel1)131182 |b 5 |u fzj |
700 | 1 | _ | |a Nefediev, Alexey |0 P:(DE-Juel1)131268 |b 6 |
700 | 1 | _ | |a Nieves, Juan |0 0000-0002-2518-4606 |b 7 |
700 | 1 | _ | |a Wang, Qian |0 P:(DE-HGF)0 |b 8 |
773 | 1 | 8 | |a 10.1103/physrevd.105.014024 |b American Physical Society (APS) |d 2022-01-24 |n 1 |p 014024 |3 journal-article |2 Crossref |t Physical Review D |v 105 |y 2022 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.105.014024 |g Vol. 105, no. 1, p. 014024 |0 PERI:(DE-600)2844732-3 |n 1 |p 014024 |t Physical review / D |v 105 |y 2022 |x 2470-0010 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905852/files/PhysRevD.105.014024.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:905852 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131182 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131268 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-3-20111104 |k IKP-3 |l Theorie der starken Wechselwirkung |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IKP-3-20111104 |
981 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
999 | C | 5 | |a 10.1093/ptep/ptaa104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.91.262001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.81.014029 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S0217751X15300021 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2016.11.003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2016.05.004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.90.015004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3367/UFNe.2018.08.038411 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6471/ab72b0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2020.05.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ppnp.2020.103757 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.114015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.116010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2004-10105-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/s10050-021-00413-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0256-307X/38/9/092001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.L051502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1572-9494/ac27a2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2021.136693 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.116008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.114002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.114009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.104.L111502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01413192 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(93)90614-U |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s00601-004-0068-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2011.04.023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.80.114023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.034019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.88.114008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.094018 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.102.091502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09534-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.25.2370 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(83)90991-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01557611 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.35.969 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.37.744 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01565058 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01498626 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01413104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0370-2693(02)03069-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2003-10128-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2007.04.010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.114015 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.094027 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0253-6102/50/2/31 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-009-1140-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.79.074010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.81.074018 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0253-6102/55/6/20 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S2010194511000766 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2011.07.082 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.87.014003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP07(2013)153 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-017-5297-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.119.202001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.119.202002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.5506/APhysPolB.49.1781 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP11(2017)033 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-017-5507-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.97.035211 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysa.2018.12.019 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.034507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/s10050-019-00012-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.101.014001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.101.094032 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjp/s13360-020-00741-w |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.102.034012 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.103.016001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1674-1137/abde2f |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.103.114009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/universe7040094 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1674-1137/ac1b97 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.074029 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.114013 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.45.R2188 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.46.1148 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.55.5851 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.034006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2005-10154-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2004.03.062 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2009-10845-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.91.034002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2013.08.073 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP08(2019)080 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.174.2022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysa.2009.08.010 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjc/s10052-014-2885-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.101.054024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2016.10.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.98.074023 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.094013 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP08(2021)157 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.094028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.81.094028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.137.B672 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.85.015201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.014012 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/ptep/ptv081 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.93.096001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.056004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.87.076006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.88.054007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3573593 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|