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8.1 Introduction 
The DEEP-EST system implements the Modular Supercomputing Architecture (MSA) 
which has evolved within the DEEP project family over several years90. One of the 
most important advantages of the MSA is its flexibility: MSA systems can target a wide 
range of applications with widely different characteristics and system requirements. 
This guide shows how to port applications to the DEEP-EST system (described in 
Chapter 1 of this volume) and gives advice on how to get good performance out of it. 
Each kind of application (as with the different co-design applications within the DEEP-
EST project) may have different ways to use the DEEP-EST system.  

In this document, several use cases will be explained, and advice will be given about 
how an application can benefit most from the system architecture. Examples of the 
improvements that could be achieved for demonstrator applications will be shown. This 
guide is structured in the following way: 

                                             
89 Now at scapos AG, Germany. 
90 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Tutorial1/MSA_Idea  
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 First in Section 8.2 we describe how to analyse an application and figure out 
which modules to use in Sections 8.2 and 8.3. 

 Once this decision is taken, Section 8.4 focus on the real porting work (mostly 
porting to GPU, plus a short introduction on the FPGA porting). 

 The next topic is how to partition the application code to enable it to run across 
multiple modules. This is covered by Section 8.5. 

 Section 8.6 describes several different file systems which are provided in the 
DEEP-EST system. 

 Section 8.7 covers certain additional features provided on the DEEP-EST 
system. 

Last, but not least, Section 8.8 summarizes the most important lessons learned by the 
application developers in the DEEP-EST project, which refer to their experience 
adapting the codes to MSA, but also more in general when preparing them to exploit 
heterogeneous computing at the Exascale era. 

8.2 Analysis 

The three DEEP-EST prototype modules were designed to fit the needs of different 
kinds of applications. The ESB has the highest node count and is equipped with 
GPGPU accelerators coupled to relatively weak CPUs in the interest of energy 
efficiency. Highly scalable applications or codes with data and control structures suited 
to GPGPU computation can run perfectly on the ESB, yet it is essential that the 
computation happens exclusively on the GPGPU, and that all data structures do fit 
within the 32 GB of GPGPU high-bandwidth memory. Codes or code parts that require 
high amounts of memory, for example, should run on the DAM with 384 GB DRAM and 
3 TB Persistent Memory attached to each node. There are also different ways to 
distribute the code parts depending on the individual application. There might even be 
applications using only one module, with the choice of the module depending, among 
others, on the problem size. Applications which combine parts best suited for different 
modules have the option of running simultaneously across multiple modules, while 
other codes with a workflow structure will run different steps on different modules, for 
instance as a job chain.  

A detailed analysis of the code is essential to get to know which parts of the code can 
benefit from which parts of the architecture. Without this it is not possible to get all the 
benefits out of the DEEP-EST system. Here are some recommended profiling tools (all 
available on the DEEP-EST system): 
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 Intel VTune Amplifier 91 
 Intel Vector Advisor 92 
 JSC Scalasca 93 
 BSC Extrae/Paraver (for basic instruction please see Section 8.2.1) 94 95 

These tools will help determining which are the most time-consuming parts, whether 
the application is compute, memory or bandwidth bound, and how well balanced the 
application is. With this insight the developer can decide how to map the application to 
the MSA: for example, time consuming parallel code parts, should exploit the scalable 
GPU nodes on the ESB, whereas code parts that need a large amount of (fast) memory 
should use the DAM with Intel Persistent Memory.  

8.2.1 Performance analysis tools, Extrae, Paraver & Dimemas (BSC) 

Extrae is a dynamic instrumentation package to trace programs. It generates trace 
files that can be later visualized with Paraver. To use Extrae on the DEEP-EST system 
load first a compiler and the MPI distribution that you want to use, e.g. GCC and 
ParaStationMPI, and then load the Extrae module:  

 

ml GCC 

ml ParaStationMPI 

ml Extrae 

 

8.2.1.1 Using Extrae in 3 steps 

8.2.1.1.1 Adapt the job script to use Extrae 

The job script needs to be adapted in three aspects (Figure 8.1):  

 Load the above mentioned modules 
 Specify the name for the output traces (optionally) 
 Run with Extrae 

                                             
91 https://software.intel.com/content/www/us/en/develop/download/intel-vtune-amplifier-2019-help.html  
92 https://software.intel.com/content/www/us/en/develop/articles/quick-analysis-of-vectorization-using-

intel-advisor-2019.html  
93 https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/docs/UserGuide.pdf  
94 https://tools.bsc.es/doc/html/extrae   
95 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Tutorial2  
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Figure 8.1: Job script with Extrae 

The trace.sh wrapper loads Extrae. The user needs to select the proper tracing 
library depending on their application type (MPI, OpenMP, CUDA, hybrid, etc.) and 
language (C, Fortran). The available libraries can be found under 
$EBROOTEXTRAE/lib. 

 
Figure 8.2: trace.sh to extract traces with Extrae 

8.2.1.1.2 Extrae XML configuration 

Within the trace.sh file you have to specify the XML file containing your Extrae 
configuration. In Figure 8.2 it is called extrae.xml. Here you can configure what will be 
traced, e.g. if you want to trace the MPI calls and the call-stack the file should look like 
this: 



8. Best Practices Guide 

 191 DEEP-EST 

 

There are several other options which can all be found in the Extrae documentation96. 

8.2.1.1.3 Run it 

Now you can submit your job as usual: 

sbatch job.slurm 

Please note: Always run your job from the /work directory not from $HOME! 

Once the job finishes you will have the trace (3 files): 

 lulesh2.0_27p.pcf 
 lulesh2.0_27p.prv 
 lulesh2.0_27p.row 

8.2.1.2 First steps of analysis 

To analyse the traces first copy them to your local computer and then load them with 
Paraver. Several guided demos are included with Paraver, which walk the users 
through the first steps of analysis with real applications examples. These are available 
for download clicking on Help  Tutorials  Download and install tutorials. Following 
the tutorials is as easy as clicking on the hyperlinks which open pre-generated example 
traces and different analysis views.  

For new users it is recommended to start with Tutorial 1 which explains basic control 
and navigation with the tool; and Tutorials 4 & 5 which show two examples of complete 
analyses with pre-generated traces from real applications. More advanced users will 
find Tutorial 3 interesting as it describes an analysis methodology that focuses on 
detecting work and performance imbalances. If the users already have a trace of their 
own application and load it on Paraver, the tutorials can be likewise applied on their 
traces, and the analysis views will be computed on the users' application. For more 
information on how to analyse the traces and using Paraver, we refer to the Tutorial95.  

                                             
96 https://tools.bsc.es/doc/html/extrae   
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8.2.1.3 Simulations with Dimemas 

Dimemas is a simulator that reconstructs the time behaviour of a parallel application 
on a machine modelled by a set of performance parameters. Performance experiments 
can be done easily changing the target architecture by modifying network and CPU 
parameters. For communications, a linear performance model is used, but some non-
linear effects such as network conflicts are taken into account. The simulator allows 
specifying different task-to-node mappings. 

This simulator is useful to predict the behaviour of applications on non-existent 
machines, perform parametric sweeps (e.g., mass-evaluate different BW and 
latencies), and conduct ‘what if’ analyses to answer questions like: “Does the 
application have load balanced and dependence problems?”, “Would we benefit from 
grouping messages?”, “Is bandwidth the problem?”, “Is network contention the 
problem?”. 

Dimemas generates Paraver trace files enabling the user to conveniently examine any 
performance problems indicated by a simulator run. The Paraver Tutorial 2 contains 
an introduction to the use of Dimemas with an example and guidelines to get started 
with this tool. For more information on the architecture and use of the simulator, the 
user may refer to the tool website97.  
  

                                             
97 https://tools.bsc.es/Dimemas  
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8.3 MSA Usage Models 

Within the DEEP-EST project we identified 6 different usage models for our 
applications, which can be sorted into two different categories: Single and multi-module 
usage. In each category we have three different usage models (see Figure 8.3). 

Your
application

Profile your
application

Decide on usage model
based on the profiling

Multi Module usageSingle Module usage

Always use the
same module

Used module
depends on
problem size

Used module
depends on

module availability
Job chain

Use multiple
modules

simultaneously

Combination of running
jobs simultaneously and

a job chain  
Figure 8.3: Different usage models on the MSA 

 

8.3.1 Single module usage 

Always use the same module: Examples for this usage model are NEST, or the 
GPU/FPGA Imager.  

 NEST needs strong CPUs and cannot take advantage of GPGPU accelerators 
so it can either use the CM or DAM. Since NEST does not makes use of GPUs, 
FGPAs, or a huge amount of memory, the DAM nodes are somewhat over 
dimensioned. The CM is therefore the best suited for executing NEST.  

 The GPGPU and FGPA Imagers used in radio astronomy need to run on the 
DAM. For the FPGA imager this is obvious since only the DAM nodes are 
equipped with FPGA accelerator. The GPU imager needs a huge amount of 
memory, thus running on the GPUs in the ESB nodes is not an option. 

Used module depends on use case: This is the case in the single module version of 
GROMACS. The CM is used for small size problems, whereas the GPUs on the ESB 
are needed for the larger use cases. GROMACS could also use the GPUs on the DAM 
but the ESB is a better choice because the code does not need much memory and is 
scalable over many nodes. 



Porting applications to a Modular Supercomputer 

DEEP-EST 194  

Used module depends on module availability: Finally, there are applications, such 
as the CMS Reconstruction, which can run on all the modules. The CMS 
Reconstruction has a CPU version for the CM and a GPU version for ESB and DAM. 
Since the execution runs in all nodes independently it can just utilize any kind of nodes 
that are available at any given time. 

 

8.3.2 Multi module usage 

Job chain: An example for the “Job chain” model are the coupled versions of NEST 
plus Arbor (Figure 8.4) and NEST plus Elephant (Figure 8.5). NEST first runs on the 
CM (as explained in Section 8.3.1) and after that Arbor starts to work on the output 
from NEST using the GPUs of the ESB. Similarly, Elephant starts the data analysis on 
the output from NEST on the DAM. 

 
Figure 8.4: NEST plus Arbor workflow 

 

 
Figure 8.5: NEST plus Elephant workflow 
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Use multiple modules simultaneously: A good example for this fifth usage model is 
the xPic and GMM combination: xPic’s particle solver runs on the GPUs of the ESB 
and its field solver runs on the CPUs of the CM, while GMM runs on the DAM. Particle 
and field solvers from xPic run simultaneously and exchange data during runtime. The 
data produced by the particle solver is analysed by GMM on the DAM nodes (Figure 
8.6). 

 
Figure 8.6: xPic plus GMM workflow 

 

Another example is GROMACS in the offload version. It simultaneously uses the CM 
and the ESB within one job (Figure 8.7). 

 

 
Figure 8.7: GROMACS workflow for the offload version 
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Combination of job chain and jobs running simultaneously: An example of this 
last usage model is the workflow of DLMOS (DAM)  xPic (CM+ESB)  GMM (DAM). 
The ML codes DLMOS and GMM will run on the DAM and between these two jobs 
xPic will run on CM+ESB (Figure 8.8).  

 

 
Figure 8.8: Workflow of DLMOS plus xPic plus GMM 

 

 

8.4 Porting 

The DEEP-EST system provides the GCC (8.3.0, 9.3.0, 10.2.0), Intel (2019.5.281) and 
NVHPC (20.9, experimental) compilers for C, C++ and Fortran. There are also different 
MPI versions available (ParaStationMPI, Intel MPI and OpenMPI), but it is 
recommended to use ParaStationMPI because it enables all the MSA features on the 
system. If the code needs specific software packages, it should be checked if they are 
provided on the DEEP-EST system. Detailed information on all available packages and 
the module environment used on the system can be found in the DEEP-EST Wiki98. 
Jobs can be submitted to the job queue for all compute modules (CM, ESB, DAM) via 
the Slurm resource manager. 

                                             
98 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Information_on_software  
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8.4.1 The resource manager 

Slurm supports both interactive and batch jobs (scripts submitted into the system). This 
is an example on how to allocate an interactive session on the CM (-p dp-cn) with 
4 nodes (-N 4) and 2 tasks per node (-n 8) for 30 minutes (-t 00:30:00): 

srun -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash –i 

The following example shows a job script for submitting a batch job using the same 
parameters (number of nodes, runtime etc.) as before: 

 
Figure 8.9: Job script example 

For more details (all available partitions, srun and sbatch options and useful Slurm 
commands) refer to the batch system section in the DEEP-EST Wiki 99. 

8.4.2 Code porting and optimisation on the CM 

Porting the codes to the CM should be straightforward since the CM is equipped with 
standard, general purpose CPUs and every code targeting multi-core CPUs should 
work.  

8.4.3 Code porting and optimisation on the ESB 

The ESB is equipped with NVIDIA Tesla V100 GPUs. The code parts that were 
identified to be compute intensive and can be parallelized should be ported to the 
GPUs. If serial code parts are just included to manage the GPU computation, they do 
not need a high computing capacity, and can fit all application data into the 32 GB high-
bandwidth GPGPU memory, using only ESB nodes with its comparatively weak CPUs 
is sufficient. If the serial code parts need stronger CPUs, the developer should strongly 
consider dividing the code onto CM (strong CPU) and ESB (GPU). The DAM would 
also be an option for strong CPU plus GPGPU runs, but because there are only 16 
nodes, running on the CM plus ESB (see Section 8.5) makes more sense to scale the 
application.  

                                             
99 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system  



Porting applications to a Modular Supercomputer 

DEEP-EST 198  

Porting code to the GPU can be done with different programming models. On the 
DEEP-EST system we support the following: CUDA, OpenACC, OmpSs, and 
OpenMP5.0. Below we give some introductory information on how to use these 
programming models. For more details we refer to the specific user guides and 
documentation, since detailed explanations of the programming models and their 
usage would go far beyond the scope of this document. 

8.4.3.1 Using CUDA 

Since the GPGPUs in the DEEP-EST system are NVIDIA GPGPUs, using CUDA is 
likely the way to get the maximum performance out of the code. However, it should be 
kept in mind that CUDA code is not the best option for non-NVIDIA GPUs. In addition, 
a lot of effort may be required to port an application to CUDA if one has to start from 
scratch. As an example, we will use a simple vector addition (see Figure 8.10). 

First, the computations that should run on the GPGPU have to be turned into CUDA 
kernels. For this the __global__ keyword has to be added to the affected functions. 
If the Host device needs the results from the GPU, it must be ensured that the host 
waits for the GPGPU to finish the calculations. For this the function 
cudaDeviceSynchronize()can be used.  

In addition, one has to manage memory and potentially data placement. With the 
available Unified Memory, a memory space can be allocated and then be used by the 
CPU as well as by the GPU, so that the data does not need to be transferred manually 
anymore. To allocate and later free Unified Memory, two functions need to be called 
(as replacement for ‘malloc’ and ‘free’): cudaMallocManaged(…) and 
cudaFree(…) 

 

Now the code is ready to run on the GPU, so finally the kernel can be launched with 
vectoradd<<<x, y>>>(n, a, b).  
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Figure 8.10: C++ version of the vector addition 

Figure 8.11 shows a code including the above changes. Although these changes make 
the code run on the GPU, there is plenty of room for optimization, so the basic code 
should then be analysed with a profiler, e.g. nvprof, to get an idea of what to optimize. 
There are plenty of tutorials, guides and courses on how to write and/or optimize CUDA 
codes: here are just a few examples100 101 102.  

                                             
100 https://developer.nvidia.com/blog/even-easier-introduction-cuda/  
101 https://fz-juelich.de/SharedDocs/Termine/IAS/JSC/EN/courses/2020/ptc-gpu-cuda-2020.html  
102 https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html  
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It should be noted that for certain codes, manually managing the location of data 
objects (on host or GPU memory) can extract more performance than relying on the 
Unified Memory mechanisms; this is akin to cache optimizations on traditional CPU 
systems. For the ESB, it is critical to ensure that all application data objects are located 
in GPU memory. 

 
Figure 8.11: Vector addition example in the CUDA version 
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8.4.3.1.1 The new Magma library 

Within the DEEP-EST project, UoI faced the concern of having to significantly refactor 
their codebase, so that they could develop multiple application versions supporting 
both CPUs and GPUs. To mitigate this problem, they developed a library (called 
“Magma”) that mimics the C++ standard library blueprint. The library takes care of 
linking the source code to either the C++ STL (in case of CPU) or CUDA Thrust (in 
case of GPGPU) libraries. 

The Magma library is available to all as free-open-source-software via a public GitHub 
repository103 and its functionality is detailed in Section 6.4 of this book. 

 
Figure 8.12: Example of a for-each loop with Magma 

Figure 8.12 shows an example on how the Magma library is used in the NextDBSCAN 
application of UoI. The source code is identical for both the CPU and GPGPU platform 
with the exception of the necessary host and/or device annotations which CUDA 
requires to specify the execution target. 

8.4.3.2 Using OpenACC 

Another option to offload code to the GPUs is using OpenACC via the NVIDIA NVHPC 
compiler. OpenACC is a directive-based performance-portable parallel programming 
model. With OpenACC applications can be ported to a wide variety of heterogeneous 
HPC hardware platforms and architectures with significantly less programming effort 
than required for a low level model such as CUDA. Programming with OpenACC 
should happen in 4 steps: 

1. Identify parallelism (already done in Section 8.2) 
2. Parallelize code parts with OpenACC 
3. Express data locality 
4. Optimize performance 

After the analysis phase described in Section 8.2, it is known which code parts should 
be parallelized on the GPU. These code parts will be put within a pragma region as 
shown in Figure 8.13 for a small Jacobi iteration. The two nested inner loops (over i 

                                             
103 https://github.com/ernire/magma/tree/master 
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and j) can be parallelized. The kernels directive tells the compiler to analyse the code 
and look for parallel loops in the specified region. In this case, the compiler identifies 
two regions of code to generate an accelerator kernel. The compiler also analyses 
which arrays are used in the calculation and generates code to move A and Anew into 
GPU memory. The compiler even detects that it needs to perform a max reduction on 
the error variable. 

The next step is to express the data locality. Sometimes not everything needs to be 
copied on and from the device. With the data pragma the relevant data locations can 
be specified. The copy clause in the data pragma tells the compiler that it should copy 
the A array to and from the device as it enters and exits the region, respectively. Since 
the Anew array is only used within the convergence loop, the create clause is used to 
request the compiler to create temporary space on the device, since we do not care 
about the initial or final values of that array. 

 
Figure 8.13: Jacobi example in the OpenACC version 
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In following references the reader can find more detailed guides and courses to get 
started with OpenACC104,105,106. 

For the ESB, data objects have to stay in GPGPU memory as long as possible, so the 
programmer should radically limit copying between CPU and GPGPU as long as it is 
not strictly necessary for code correctness.  

 

8.4.3.3 Using OmpSs-2 

The OmpSs-2 task-based programming model supports message-passing libraries 
(MPI) and improved GPU programming of the MSA. 

Herein we will cover the well-known N-Body benchmark, which numerically 
approximates the evolution of a system of bodies in which each body continuously 
interacts with every other body. A familiar example is an astrophysical simulation in 
which each body represents a galaxy or an individual star and all bodies attract each 
other through gravitational force. 

In the benchmark presented here the particle space is divided into smaller blocks. 
Similarly, MPI processes are also divided into two groups: CPU processes and GPU 
processes. Firstly, GPU processes are responsible for computing the forces between 
each pair of blocks of particles; secondly, these forces are sent to CPU processes, 
where each process updates its blocks of particles using the received forces. The 
blocks of particles and forces are equally distributed amongst each MPI process within 
each group. Thus, each MPI process is in charge of computing the forces or updating 
the particles of a consecutive chunk of blocks. 

                                             
104 https://developer.nvidia.com/blog/getting-started-openacc/  
105https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2020/ptc-gpu-openacc-

2020.html?nn=2320772  
106 https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf  
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Figure 8.14: NBody solver 

The computation pattern in the code (Figure 8.14) is repeated during multiple time 
steps. The communication pattern during each time step consists of GPGPU 
processes, which exchange their particles with each other in a circular manner in order 
to compute the forces between their own particles against those from other GPGPUs. 
For the purpose of simplifying this pattern, this benchmark uses a different MPI 
communicator for the circular exchange. Once a GPU process finishes the 
computation of its forces, it sends the forces to the corresponding CPU process(es) 
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and then it receives the updated particles. MPI sends/receives are performed 
separately on each block. 

The actual GPGPU computation takes place within the function calculate_forces. 
A closer look to this function in Figure 8.15 reveals that the programmer has indeed 
the choice of using either the CPU or the GPU version of this function. 

 
Figure 8.15: Calculate_forces function 

The code part in Figure 8.16 shows the CPU version of the kernel associated to the 
computation of forces inside a block. It is worth noting that the programmer is 
responsible for annotating this function with OmpSs-2 pragmas in order to convert this 
kernel into a regular task, to be later executed in parallel by the CPU. 

 
Figure 8.16: CPU kernel 
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More interesting is to see which modifications are now necessary to convert the 
previous, original CPU code into its equivalent GPU code and, at the same time, render 
it compatible with OmpSs-2. In Figure 8.17 we add the CUDA kernel declaration in the 
header file kernel.h. It is important to highlight that the programmer is responsible 
for annotating this CUDA kernel as if it were a regular (i.e., CPU) function that can later 
be invoked by the OmpSs-2 runtime. Note, for instance, that now it is necessary to 
indicate the clauses device and ndrange. It can be readily seen that this procedure 
eases the development of GPU programming and is rendered possible thanks to the 
OmpSs-2 runtime, which takes care of data movements and correct synchronization 
between the host (CPU) and device (GPU) tasks and kernels following a true data-flow 
execution model. 

 
Figure 8.17: CUDA header file defining OmpSs-2 tasks for GPU 

Finally, the code in Figure 8.18 shows the calculate_force_block_cuda CUDA 
C kernel from the N-Body application. This kernel is almost identical to the CPU kernel 
illustrated in Figure 8.16. It is important to point out that the CUDA kernel code is 
located in a different file that is separately compiled by the CUDA C compiler. For 
completeness, the definition of the forces_block_t has been added to highlight that 
it is a struct of static arrays, thus suitable for host–device data movement. Data 
movement makes use of the CUDA unified memory. The OmpSs-2 runtime has been 
extended to explicitly manage data transfers, so that unified memory is no longer a 
hard requirement. 
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Figure 8.18: CUDA kernel 

8.4.3.4 Using OpenMP 5.0 

GPGPU (or more generally, accelerator) offloading was introduced into the OpenMP 
standard with version 4.5 and enhanced functionality is provided with OpenMP 5.0. 
Like OpenACC and OmpSs, OpenMP relies on using directives and supports Fortran, 
C and C++. The fork-join model used by OpenMP 5.0 is similar to OpenACC, but 
OpenACC is more descriptive and OpenMP 5.0 is more prescriptive. 

This section shows multiple steps to transform a basic “SAXPY” code into a fully 
functional OpenMP 5.0 application. It covers the most common and useful approaches 
to offload a computationally intensive loop to the GPU accelerators in the ESB and 
DAM modules of the DEEP-EST system. 

The basic code contains two for loops, one for the initialization of the values and a 
second for the main operations. In this example we have wrapped the main for loop 
in a function in order to show how such externally defined methods can be called from 
within OpenMP sections. All vectors are allocated dynamically. 

Porting the SAXPY code to the GPU using OpenMP 4.5/5.0 requires the addition of 
only one line of code (see Figure 8.19). This new line performs the memory transfers 
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between Host and Device and divides the computation of the for loop among the 
different threads in the GPU. 

Figure 8.19: Example for OpenMP 5.0 offload 

Here we explain each one of the terms in the pragma call: 

 #pragma omp: signals to the compiler that the following code section will be 
processed by OpenMP. 

 target: tells the compiler that the following section of code will be executed on 
the GPU. This is equivalent to the definition of a kernel function around the for 
loop as shown in the CUDA code in Figure 8.11. 

 teams: instructs the main thread in the Device to spawn multiple, isolated, 
threads associated with the different processor blocks (SMs) in the GPU. 

 distribute: instructs the GPU to decompose the loop iterations and assign 
different chunks to the different teams requested. 

 parallel: instructs each team master thread to spawn a group of threads for 
each team. 

 for: distribute the loop iterations in each teams’ chunk across the threads in 
the team. 

 map(to:…): perform a data transfer of the listed vectors from the Host to the 
Device on entering the OpenMP section. 
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 map(from:…): perform a data transfer of the listed vectors from the Device to 
the Hoist on exiting the OpenMP section. 

There are several metadirectives, declare target, macro defined directives, and device 
allocations, which will be explained below. 

8.4.3.4.1 Declare target 

In the previous section one single for loop was offloaded to the accelerator, but in 
most useful cases the programmer wants to offload more complex code, usually 
encapsulated in functions (or kernels). Functions that can be called from within an 
accelerated target region must be defined by opening and closing declare 
target pragmas, as shown in Figure 8.20. 

 
Figure 8.20: OpenMP 5.0 offload: Declare target example 

With this change, it is possible to offload the saxpy function to the accelerator in any 
location of the code. The function must only be called from within a target region (in 
the snippet above the scope of the target region contains only one line). The offloading 
line used in Figure 8.19 has been divided here in two parts: 1) the target teams 
pragma that spawns a set of master teams in the accelerator and performs all memory 
transfers to the device, and 2) the distribute parallel for pragma, called from 
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within the accelerator in the saxpy function, that segments the for loop and 
distributes it among the teams and the corresponding threads. 

8.4.3.4.2 Declare target + declare variant 

 
Figure 8.21: OpenMP 5.0 offload: Declare target + declare variant example 

If the programmer wants to use the saxpy function both in the host (CPU) and the 
device (accelerator), it is possible to create alternative kernels of the function with their 
respective OpenMP pragmas. Figure 8.21 shows that in the main code the function is 
called, first in the Host (without target pragma) and once in the Device (inside a 
target pragma). Two different versions of the routine are activated for each case. 
The declare variant call instructs the compiler to look for an alternative version of 
the code following the match conditions. In this case, if the function is called within a 
target region, the variant gpu_saxpy function is called. 

This division of work is interesting for applications that want to perform the same 
procedure both on the Host and on the Device. This could allow workload balancing 



8. Best Practices Guide 

 211 DEEP-EST 

between CPU and Accelerator, maximizing the use of the available computational 
resources. 

8.4.3.4.3 Macros 

 
Figure 8.22: OpenMP 5.0 offload: Example for Macro usage 

The problem with the use of the declare variant clause is that important parts of 
the code need to be duplicated. This is a potential source of bugs and can complicate 
its maintenance. To avoid code duplication the OpenMP pragmas can be surrounded 
by macros defined by the user. In Figure 8.22 the Host and Device versions of the 
saxpy function have been separated by the use of the compile-time variable __GPU__. 
At compile-time it is possible to generate one version with offloading or a different 
version without offloading. This approach also allows the inclusion of details of the 
architecture. For example, the programmer can define the flags __INTELCPU__, 
__AMDCPU__, __AMDGPU__, __NVIDIAGPU__, corresponding to the four most 
common hardware architectures today. Each one will encompass a different OpenMP 
pragma line before the for loop in the saxpy code. 

8.4.3.4.4 Metadirectives 

 
Figure 8.23: OpenMP 5.0 offload: Metadirectives example 
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The previous approach is very useful but can become cumbersome and it almost feels 
like OpenMP should support such a use case scenario. The OpenMP 5.0 standard 
does provide an alternative called metadirectives. Instead of using compilation macros 
the metadirective is built using the following schema: 

#pragma omp metadirective \ 

 when (<condition> : teams distribute parallel for) \ 

 default (parallel for simd) 

This structure allows the programmer to get rid of macro definitions and uses 
<conditions> to choose one OpenMP line instead of the default OpenMP line. In 
Figure 8.23 the condition selects the outcome of the metadirective based on the 
type of hardware architecture in which the loop is running.  

This is a very handy option but presents two drawbacks: 1) it currently allows only two 
options, the one selected by the <condition> and the default, and 2) it is not 
currently supported by most compilers, including LLVM (March 2021). 

8.4.3.4.5 Macro defined directives 

 
Figure 8.24: OpenMP 5.0 offload: macro defined directives example 

A workaround to avoid code duplication and simplify its main structure, without using 
metadirectives, is to define the OpenMP lines with a global macro that can then be 
referenced inside the code as shown in Figure 8.24. This approach makes the code 
much cleaner but requires the programmer to specify all the possible OpenMP calls at 
the beginning of the code. This could lead to a large number of macros that can be 
included in a separate file. Although this approach can complicate the maintenance of 
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the code, the final result is much cleaner and easier to follow for non-experts in 
OpenMP. 

 

8.4.3.4.6 Device allocation 

 
Figure 8.25: OpenMP 5.0 offload: Device allocation example 
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One of the most important optimizations in OpenMP, and in general for any code that 
uses offloading, is to minimize the transfers of information between the Host and the 
Device. Up until now we have used the map(…) clause. This performs a memory 
transfer between the CPU and the Accelerator. To avoid such transfer, the programmer 
can allocate memory directly on the Accelerator with the API functions 
omp_target_alloc() and omp_target_free(). These two functions work in 
almost the same way as C/C++ malloc() and free() functions, but require also the 
number of the target accelerator device. The memory allocation function returns a 
pointer that is associated with memory in the accelerator. Any access to this pointer 
from code outside a target region will produce a memory access error. 

In the initialization and in the saxpy functions shown in Figure 8.25, the pointer 
corresponding to the dynamically allocated accelerator memory is identified by the 
clause is_device_ptr(…). The allocation functions must be called at any point 
outside the target region, but the pointers must only be referenced inside them. 

In this snippet we show how the saxpy function receives the addresses of the two 
dynamically allocated accelerator vectors and returns the result by memory transfer to 
the Host device using the map(from:…) clause. This version of the saxpy test results 
in the best performance. It is also the cleanest version and the easiest to maintain. We 
recommend other programmers to understand the sections above, but to use the 
pattern presented in this section as a starting point of their code porting procedure.  

 

8.4.4 Code porting and optimisation on the DAM 

The DAM nodes are equipped with two different kinds of accelerators: NVIDIA Tesla 
V100 GPUs and Intel Stratix10 FPGAs. Section 8.4.3 already covers porting to GPUs. 
This section will have a look at the FPGAs. 

8.4.4.1 oneAPI 

Intel oneAPI107 is an open, unified programming model. It is used to simplify 
programming across CPUs, GPUs, FPGAs and other accelerators. On the DEEP-EST 
system oneAPI is interesting for either working on FPGAs or CPUs. Information on 
how to work with it on FPGAs can be found here108. Section 7.4 of this book explains 
how to use it for GPU portable programming. 

                                             
107 https://software.intel.com/content/www/us/en/develop/tools/oneapi.html  
108 https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html  
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8.4.4.2 OpenCL 

OpenCL is an industry standard for programming systems that contain several 
heterogeneous devices and memory spaces. Like CUDA, the standard uses a kernel 
language to specify optimized code parts that run on accelerators like GPGPUs or 
FPGAs, an API to define and direct code parts to be run on a specific device, and an 
API to manage the (usually disjoint) memory spaces of devices and transfer data 
between them. OpenCL is used in non-HPC applications, such as heterogeneous 
embedded or mobile systems, and it has emerged as the method of choice to program 
FPGAs if the significant additional effort to develop RTL or VHDL code is seen as not 
worth the potential performance gain. 

OpenCL for Intel CPUs and the FPGAs of the DAM module is provided by the Intel® 
FPGA SDK for OpenCL™ 109, which is currently in version 20.4, complemented by a 
BSP (board support package) matching the installed Stratix 10 devices. Figure 8.26 
shows an example of an OpenCL kernel to compute and print out the Fibonacci 
numbers on the FPGA. A very detailed programming guide with information on how to 
build and optimize your OpenCL kernels, how to adapt your host program, and how to 
compile the code, can be found here110. 

 
Figure 8.26: Fibonacci OpenCL kernel 

OpenCL is also supported on a range of GPUs, including the NVIDIA Tesla V100.  

 

8.4.5 Data Analytics & Machine Learning frameworks 

The DEEP-EST system also provides specific frameworks targeting Data Analytics and 
Machine Learning applications:  

                                             
109https://www.intel.de/content/www/de/de/programmable/products/design-software/embedded-

software-developers/opencl/support.html  
110 https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807965224.html  
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 TensorFlow: an end-to-end platform that makes it easy for developers to build 
and deploy ML models.111 On the DEEP-EST system TensorFlow versions 2.2 
and 1.13.1 based on Python 3.6.8 are deployed. 

 PyTorch: a Python package that provides two high-level features: Tensor 
computation (like NumPy) with GPU acceleration and Deep Neural Networks 
built on a tape-based autograd system112. On the DEEP-EST system PyTorch 
versions 1.1.0 and 1.4.0 based on GCC are deployed. 

 Horovod: a distributed deep learning training framework for TensorFlow, Keras, 
PyTorch, etc.113. On the DEEP-EST system Horovod version 0.16.2 based on 
GCC and ParaStationMPI is deployed. 

These frameworks can be used on either CPUs or GPUs, so in theory they can run on 
all three compute modules. But since for data analytics (in most cases) a large amount 
of memory is necessary, the DAM would in general be the best suited module. 

For trained networks there is the option of generating an interoperable ONNX114 
version which can be used for inference on many platforms including accelerators, 
which do not support the full-blown neural network development platforms listed above. 
This is a potential migration path to the FPGA accelerators of the DAM nodes, should 
users be interested in performing inference there.  

 

8.5 Use of multiple modules 

To run an application on multiple modules, it has to be partitioned: the code parts 
optimized for the different modules need to be separated and communication between 
the different parts has to be coded (preferably using MPI or files). As shown in Figure 
8.3 there are three ways of using multiple modules: running on multiple modules at the 
same time (multi-module jobs), running consecutively on different modules (job chains 
and workflows), or a combination of both. 

There might be jobs that need more than one module either at the same time or 
consecutively. In both cases one has to first divide the code in the parts for each 
module, and then make sure that both parts can communicate if necessary (either with 
MPI or through the file system). 

                                             
111 https://www.tensorflow.org/tutorials?hl=en  
112 https://github.com/pytorch/pytorch; the term refers to reverse-mode automatic differentiation. 
113 https://github.com/horovod/horovod#usage  
114 https://onnx.ai/, term refers to Open Neural Network Exchange 
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8.5.1 Running on Multiple Modules at the Same Time – Multi-Module 
Jobs 

The Slurm resource manager supports allocating heterogeneous jobs (using more than 
one module). Figure 8.27 shows an example how to allocate one node on the CM and 
one node on the DAM and executing the hostname command on both.  

 
Figure 8.27: Srun command to allocate a heterogeneous job 

Heterogeneous jobs can also be launched in a batch script using the packjob 
keyword. For information on functionalities regarding heterogeneous jobs in Slurm 
please see the DEEP-EST Wiki115. 

8.5.1.1 Using MPI 

After an MPI application has started its processes as shown above, they can determine 
their module affiliation and thus coordinate their work accordingly. For this purpose, 
the processes can query on which module they are currently running by looking it up 
as a Module ID in the MPI_INFO_ENV object, which is provided by the MPI standard 
for environmental adaptations (see Figure 8.28). 

This assignment between ID and modules is not fixed, but can be set by the user 
according to the needs of the application by using the environment variable 
PSP_MSA_MODULE_ID. However, if the user does not set such a module affiliation, the 
assignment of the IDs is performed automatically according to the order of the modules 
in the srun call: the first module gets ID 0, the second module ID 1, and so forth. 
Hence, it is the user’s responsibility to match the respective srun call with an 
appropriate evaluation of the queried module IDs at application level. 

                                             
115https://deeptrac.zam.kfa-

juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#HeterogeneousjobswithMPIcommunic
ationacrossmodules  
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Figure 8.28: MPI standard 

8.5.1.2 Topology-aware MPI Communicator Creation 

In addition to querying explicitly for the module affiliation, it is possible to split the 
MPI_COMM_WORLD communicator into sub-communicators reflecting the module 
affinity of processes by using the new communicator spilt type 
MPIX_COMM_TYPE_MODULE. However, please note that this split type is an extension 
in ParaStationMPI and that it is hence not part of the official MPI standard! One may 
use the macro MPIX_TOPOLOGY_AWARENESS to test whether this feature is available 
or not: 

 
Figure 8.29: MPI_Comm_split_type 

Please also note that to use these extensions, the so-called Topology Awareness of 
ParaStationMPI must be enabled, which has to be done at compile time of the MPI 
library by using the configure switch --with-topology-awareness, plus explicitly 
setting the environment variable PSP_MSA_AWARENSS=1 for the MPI sessions. 
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8.5.1.3 Using MSA-aware Patterns for Collectives 

When topology awareness is enabled for ParaStationMPI, locality information as well 
as module affiliations can be taken into account by collective MPI operations for 
choosing optimized communication patterns, for example, for global reduction 
algorithms. In doing so, the locality awareness can be two-fold: (1) with respect to intra-
node vs. inter-node communication (SMP awareness), and (2) with respect to inter-
module vs. intra-module communication (MSA awareness). The following environment 
variables can be used for enabling these different degrees of topology awareness: 

 PSP_SMP_AWARENESS=1 – Generally, take locality information into account, 
e.g. for a meaningful use of MPI_Win_allocate_shared. This feature is 
enabled by default.

 PSP_MSA_AWARENESS=1 – Generally activate the consideration of modular 
topologies. This feature is not enabled by default (see also Section 8.5.1.2).

 PSP_SMP_AWARE_COLLOPS=1 – Enable the use of MPICH’s SMP-aware 
collectives. This feature is disabled by default and requires SMP awareness in 
general (see above).

 PSP_MSA_AWARE_COLLOPS=0|1|2 – Select the feature level for MSA-aware 
collectives:

 0 – Disable MSA awareness for collective MPI operations.
 1 – Enable MSA awareness for collective MPI operations. This feature is 

enabled by default if PSP_MSA_AWARENESS=1 is set.
 2 – Apply MSA awareness recursively in multi-level topologies. For MSA 

plus SMP awareness, this requires that also PSP_SMP_AWARENESS=1 is 
enabled.

The benefits of these different feature levels will depend on the patterns and settings 
of the applications. Therefore, at this point the user is advised to test the different 
options and check for which setting the application achieves the best performance. 
Moreover, it has to be emphasized that only a suitable subset of the MPI collectives 
actually do provide topology awareness. These are: MPI_Barrier, MPI_Bcast, 
MPI_Reduce, MPI_Allreduce and MPI_Scan, as well as their respective non-
blocking counterparts. 

8.5.1.4 Realizing Workflows on MPI Level 

To pass data between workflow steps, the DEEP-EST project supports different 
approaches – for instance, using fast local storage, and/or using the global parallel file 
system. In this subsection, a further approach will briefly be introduced: the use of the 
standardized MPI_Comm_connect/accept API for passing data directly via MPI 
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messages between workflow steps. According to this approach, the preceding step of 
a workflow application opens a so-called port and forwards this port information to the 
subsequent step, which then in turn can connect to it so that both MPI sessions can 
communicate directly via an inter-communicator. A good approach for passing the port 
information is the use of a small file, where the preceding workflow step puts the port 
name when the end of this phase is reached. The next workflow step can wait for this 
file to be created and then connect to receive the data directly via MPI communication, 
which avoids the considerable overhead of storing and retrieving volume data via a 
storage device. The two functions in Figure 8.30 show draft code for realizing this 
between two steps of a workflow. 

 
Figure 8.30: MPI_comm_accept and MPI_comm_connect 
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How such steps of a workflow can be orchestrated at job level is described in the 
following sections. 

 

8.5.2 Running on Multiple Modules Consecutively – Workflows 

There are two ways of running jobs consecutively on the system: Using the –-delay 
switch (where the jobs can have an overlap, e.g., for data exchange via MPI) or using 
Slurm job dependencies (where jobs start one after another). 

8.5.2.1 --delay switch 

The Slurm version running on the DEEP-EST system allows overlapping jobs inside a 
workflow: with the –-delay n option the start of jobs in a job pack can be delayed by 
n minutes from the start of the first job of the job pack. Figure 8.31 shows a small 
example. 

After submission of this job pack, Slurm divides it into separate jobs, and ensures that 
the delay is respected by using reservations, rather than the usual scheduler. Using 
this approach, the user has to estimate the duration of each sub-job to make a good 
choice of the interval that the jobs will be delayed. As the user-provided delay values 
tend to be not so accurate, we also provide API calls that a job can use to request 
Slurm to change the start times of the remaining jobs in the workflow it belongs to. 

 
Figure 8.31: Example for --delay switch 

 

8.5.2.2 Slurm job dependencies 

With this approach the jobs will not have a guaranteed overlap, yet will still run in a 
specified sequence. Using the Slurm dependencies, jobs can be chained with the 
following script: 
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Figure 8.32: Script for job chains 

Job scripts can then be submitted in the following way: 

./chain_jobs.sh lockfile afterok simple_job.sh 

This creates a chain of jobs with the dependency type afterok. This halts the 
allocation of such jobs until the independent job finishes with success. The currently 
running independent job, when it deems fit, calls an API function to change the 
dependency type of all its dependent jobs to the type after. This enables Slurm to 
consider these jobs for allocation, provided that the resources are available. 

For more details, see the DEEP-EST Wiki116. 

                                             
116 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#Workflows  
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8.6 File system and Storage 

A number of different storage locations and file systems are available on the DEEP-
EST system: 

 JSC GPFS file systems, provided via the JUST storage system and mounted on all 
JSC systems. 

 Parallel BeeGFS /work file system, available on all the nodes of the DEEP-EST 
system and hosted on the SSSM module. 

 Parallel BeeOND file systems, created for the lifetime of Slurm jobs on demand and 
using local node storage devices (SSDs or Persistent Memory). 

 Local ext3/ext4 file systems hosted on the CM, DAM and ESB nodes. 

The next subsections will briefly describe each file system. More details can be found 
in the DEEP-EST wiki117. 

8.6.1 Permanent Storage (GPFS) 

In the usage model of JSC, each user has different home directories for each of the 
systems that they are using, so for the DEEP-EST system there will be a directory 
located in  

/p/home/jusers/username/deep  

These home folders have a low space quota and are meant to be used for configuration 
files, ssh keys, etc.  

Data and computational resources are assigned to projects. As a consequence, each 
user can create folders within each of the projects that they are part of. For the DEEP 
project, the project folder is located under  

/p/project/cdeep/username 
Here is where the user should place data. Both /p/home and /p/project are 
provided by the shared GPFS file systems. 

All data stored in the GPFS file system is regularly backed up by JSC. 

8.6.2 Shared Fast Storage (BeeGFS) on SSSM 

The SSSM module hosts a total of 304 TB of storage managed by the BeeGFS parallel 
file system118. The data is stored in two RAID arrays with 24 disks each, using a RAID6 
storage scheme. Four file system data servers provide access to these data, which are 

                                             
117 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Filesystems  
118 https://www.beegfs.io/docs/BeeGFS_Flyer.pdf  
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handled through BeeGFS clients on each of the CM, DAM and ESB nodes via standard 
POSIX I/O interfaces. The SSSM is connected to the rest of the system using 40 Gbit/s 
Ethernet technology, and data are passed on to the InfiniBand fabric via IP gateways. 
Metadata is handled by two additional servers and resides in two SSD RAID arrays.  

Users just have to move data into the /work file system tree to use the SSSM BeeGFS 
– standard POSIX interfaces are supported in all the relevant programming 
frameworks. 

As the name implies, the SSSM is considered a temporary storage device mainly to 
serve data required by applications, which run on the DEEP-EST system. Users are 
free to leave data on that system, but there is no backup and in case of resource 
shortage, data will be deleted. 

8.6.3 Local Storage 

The compute nodes of the different modules expose some local storage devices that 
can be used (via ext3/ext4 file systems) during job execution. On the CM, DAM and 
ESB, local SSDs on each node are available via /scratch directory. It is meant to be 
used instead of /tmp (which should be avoided). Please, consider that /scratch is 
local to each node, hence data in /scratch cannot be shared between nodes. 
Additionally, data in /scratch will be removed once the job is finished. The size of 
/scratch is: 

 CM and ESB nodes: ~380 GB 
 DAM nodes: ~128 GB 

On the DAM nodes there is additional local storage available through NVMe devices 
in:  

 /nvme/scratch: ~1.5 TB (formatted with xfs) 
 /nvme/scratch2: ~1.5 TB (formatted with ext4) 

As for the data in /scratch, the data in the /nvme/scratchX directories will be 
removed at job termination. The DAM nodes furthermore expose some very fast 
persistent memory which can (depending on the operation mode) directly be used by 
applications and is described in Section 8.7.1. 

8.6.4 Local storage – BeeOND 

The Slurm installation on the system provides a new switch --beeond for sbatch / 
srun / salloc commands. When this command is used, Slurm triggers the 
mechanism to start for this job the BeeOND server and clients on each assigned node 
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at allocation time. The server and clients are then properly removed at the end of a job 
and all the data is deleted. 

BeeOND provides the same POSIX interfaces as the standard BeeGFS, but the data 
is actually stored across node-local devices. Depending on the partition size and fabric 
used on the module(s), significantly higher I/O bandwidths are available compared to 
the BeeGFS system on the SSSM. 

In contrast to the use of /scratch devices, the BeeOND data is available to all nodes 
in a job partition, regardless of its physical location.  

8.7 Using DEEP-EST specific features 

8.7.1 Persistent memory 

The Data Analytics Module is composed of 16 nodes with 384 GB RAM plus 3 TB of 
Intel® OptaneTM Persistent Memory. Compared to DRAM, Intel Optane Persistent 
Memory has higher latency and lower bandwidth yet offers much higher affordable 
capacities than DRAM and data persistence. It can be configured in two principal 
modes: Memory Mode and App Direct Mode. 

In Memory Mode no changes to the application are required: the installed DRAM acts 
as a memory cache and the Intel Optane Persistent Memory transparently offers its 
full memory capacity to the OS and to applications. However, memory contents is 
volatile here. In DEEP-EST, the partner ASTRON has made use of this mode for 
applications running on the DAM nodes. No specific changes or adaptations were 
required to the base OS of the DAM or other SW packages -- Memory Mode is enabled 
via UEFI/BIOS settings and requires a node reboot. To get DAM nodes configured for 
Memory Mode, please contact the DEEP-EST support119 to reconfigure some DAM 
nodes and create a reservation for you.  

In App Direct Mode, DRAM and persistent memory are mapped onto separate memory 
address spaces (seen as memory nodes by Linux), and applications have to be 
modified in order to exploit the different characteristics of the two memory technologies. 
Access to the persistent memory occurs through regular load and store operations. 
Intel has released the Open Source Persistent Memory Development Kit (PMDK120) as 
Open Source, and recent Linux distributions do fully support it. 

                                             
119 sup@deep-est.eu 
120 Information about PMDK is available from https://pmem.io/pmdk/, including links to open repositories 

for source code and binaries 
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A special use case of App Direct mode is to map a file system onto a non-volatile 
memory partition; for this, the fs-dax layer provided by PMDK enables file system 
access while avoiding the need to go through a block device chain. For I/O-heavy 
applications, this usage mode can provide significant speed-ups, as for instance 
reported by the NextGenIO project121. The BeeOND parallel file system has been 
adapted to use the persistent memory as a storage target, enabling a job running on n 
DAM nodes to use a transient BeeGFS file system placed onto the n×3 TByte of 
persistent memory at a bandwidth significantly exceeding those achievable for the 
NVMe SSDs. 

App direct mode and PMDK are in principle supported by the current base OS of the 
DAM (CentOS 7), which runs the 3.x Linux kernel. Newer OS versions (such as 
CentOS 8 with kernel 4.x) however provide significantly better performance, and 
experiments were run with a back-ported 4.19 kernel to establish whether the DAM 
nodes would be fully functional with a combination of CentOS 7 and such kernel. 
Therefore, access to BeeOND using the persistent memory will be available once the 
kernel version has been updated accordingly. 

8.7.2 SIONlib (MSA features) 

SIONlib122 is an I/O concentrator library which can significantly speed up large-scale 
parallel I/O. It allows users to read and write binary data to/from several thousands of 
processors into one or a small number of physical files. SIONlib provides simplified file 
handling for parallel programs which logically read or write binary data in parallel into 
separate files (task-local files), yet want to avoid the significant management overhead 
caused by having thousands of these files. 

For general information on SIONlib please see the SIONlib documentation123. During 
the DEEP-EST project, three new features were added to the library: MSA aware 
collectives, I/O forwarding, and a CUDA-aware interface. Within this document we will 
concentrate on those three new features. The basics will be explained in the following 
subsections, but there is a more detailed description in the DEEP-EST Wiki124. 

8.7.2.1 MSA aware collectives 

Recent versions of SIONlib allow all parallel processes to take part in the I/O operation 
which enables an exchange of I/O data between the processes, allowing a subset of 

                                             
121 Information about the NEXTGenIO project can be found at http://www.nextgenio.eu/. 
122 https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/SIONlib   
123 https://apps.fz-juelich.de/jsc/sionlib/docu/current/index.html  
124 https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/SIONlib  
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all processes (the collector processes) to perform the transfer of data to the storage 
for all the processes. To achieve the maximum performance benefit, the collector 
processes should be the ones that are placed on parts of the MSA with a high 
bandwidth link to the parallel file system holding the large files created by SIONlib.  

The new feature adds a MSA algorithm for the selection of collector processes. This 
algorithm is portable and relies on platform specific plug-ins which are specified during 
the installation of SIONlib (so this is nothing the user on the DEEP-EST system has to 
worry about). Through these plug-ins processes, which run on parts of the system that 
are well suited for the role of I/O, the collector processes are identified. 

The MSA aware collective I/O has to be enabled when opening a file. This is done 
using in the open function the file_mode argument, which contains a string that 
consists of a comma-separated list of keys and key value pairs. The word collmsa 
must appear in that list to select MSA aware collective I/O, so the open-call should look 
like this: 

sion_paropen_mpi("filename", "...,collmsa,...", ...); 

The next step is to specify the nodes that should be used by setting an environment 
variable. For example, to select nodes from the DAM: 

export SION_MSA_COLLECTOR_HOSTNAME_EREGEX="dp-dam.*" 
 

8.7.2.2 I/O forwarding 

The collective approach mentioned above has some constraints that make it 
inapplicable in certain scenarios: 

 By design, collective I/O operations force application tasks to coordinate. This 
is at odds with SIONlib's world view of separate files per task that can be 
accessed independently. 

 Collector tasks in general have to be application tasks, i.e. they have to run the 
user's application. This can generate conflicts on MSA systems, if the nodes 
that are capable of performing I/O operations efficiently are part of a module 
that the user application does not map well onto. 

The new feature, called I/O forwarding, helps in both scenarios. It works by relaying 
calls to low-level I/O functions (e.g. open, write, stat, etc.) via a remote procedure 
call (RPC) mechanism from a client task (running the user's application) to a server 
task (running a dedicated server program), which then executes the functions on behalf 
of the client. Because the server tasks are dedicated to performing I/O, they can 
dynamically respond to individual requests from client tasks rather than imposing 
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coordination constraints. Also, on MSA systems the server tasks can run on different 
modules than the user application. 

 
Figure 8.33: Sample job script to use I/O forwarding with SIONlib 

To use the I/O forwarding within the application it has to be selected when opening the 
file. This is done by adding the word sionfwd to the file_mode argument of 
SIONlib's open functions: 

sion_paropen_mpi("filename", "...,sionfwd,...", ...); 

Be aware that the server processes are not spawned by MPI, so the server tasks have 
to be launched from the user's job script before the application tasks are launched. A 
typical job script is shown in Figure 8.33. 
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8.7.2.3 CUDA aware interface 

To more closely match the programming interface offered by other libraries (such as 
ParaStationMPI), the SIONlib functions have been made CUDA aware. This means 
that applications are allowed to pass device pointers, which point to device-memory, 
to the various read and write functions of SIONlib without the need to manually copy 
their contents to the host memory. The user may pass the device pointers as the data 
argument to SIONlib's write and read functions. 

8.8 Summary of lessons learned 
The DEEP-EST project has demonstrated the potential of the MSA. The flexibility of 
the MSA concept allows very different usage models, so that a wide range of different 
applications can be addressed. This was shown and evaluated by a selection of large-
scale, real-world applications from research fields relevant for the European research 
arena. Most of the DEEP-EST applications combine HPC computation with advanced 
data processing and analytics and therefore represent the HPC as well as the HPDA 
areas. Thus, they do consist of multiple parts with different resource requirements, 
which is suitable to assess the potential of the MSA and the DEEP-EST system.  

8.8.1 Achievements of each application development team 

During the project lifetime the application teams showed some very promising results 
which made the DEEP-EST project a part on their way towards Exascale: 

 NMBU – Neuroscience: The focus on performance and scalability in the DEEP-
EST project has allowed NMBU to enhance performance of their applications. 
This has driven the development in NEST of the optimised spike-delivery 
algorithm and the advanced dry-run mode. The work in the DEEP-EST project 
on the NEST-Arbor and NEST-Elephant couplings to combine on the one hand 
simulations at different levels of description and on the other hand simulations 
and analysis has shown the potential of distributing different parts of a workflow 
across different modules of a MSA. 

 NCSA – Molecular Dynamics: During the DEEP-EST project NCSA came to 
some very important conclusions: in computer-aided drug design or life sciences 
on the MSA one can optimise the price/performance ratio by choosing the 
appropriate configuration of compute nodes for each particular task. The multi-
GPU FMM was developed as part of this project because FMM starts to become 
beneficial for large volumes of the simulation box (more than the previously used 
PME algorithm). This new functionality allows the utilization of FMM on large 
number of GPUs and opens new possibilities for GROMACS to perform very 
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large simulations in fields like material science, polymer science, molecular 
biology, nanostructures and condensed systems. For biological systems in life 
science research, the existing PME method already provides excellent 
performance on the MSA. 

 ASTRON – Radio Astronomy: During the DEEP-EST project, ASTRON has 
made significant improvements to both of their applications: the Correlator and 
the Imager. The use of tensor-core technology will have a disruptive impact on 
correlators, due to their order-of-magnitude increase in performance and 
significant reduction in energy consumption when compared to the use of 
regular GPU cores. It was also shown that for newer generation GPUs the 
benefit even increases. ASTRON explored a new technique, called W-tiling. 
This significantly reduces the amount of memory used to create (very) large sky 
images, at the expense of a minor increase in computations, so that the 
painstaking effort of stitching hundreds of facets together belongs to the past. 
All in all, the DEEP-EST project enabled ASTRON to improve the overall 
performance of the imager and brings them a big step closer to Exascale 
imaging. Even if the results for the FPGA imager were not as positive as 
originally expected, the experience that was obtained with the OpenCL/FPGA 
toolkit has been very useful. ASTRON now uses this experience for other 
applications where FPGAs are indispensable, such as in the upgrade of the 
LOFAR stations.  

 KU Leuven – Space Weather: very valuable experience has been gained in the 
usage of OpenMP5.0 to offload code to the GPU. As a result the xPic code is 
now accelerated in a portable, vendor-independent manner. KU Leuven showed 
the nearly perfect scalability for the accelerated particle solver and the code was 
also identified as a good candidate for Exascale scalability. On the road towards 
Exascale, KU Leuven believes in the continuous development of the code xPic 
and coupling its execution with multiple on-the-fly machine learning analysis 
tools. KU Leuven has already applied for a pilot program with the LUMI 
supercomputer centre where the Cluster-Booster architecture will be deployed 
using AMD CPUs and GPUs. All developments during the DEEP-EST project 
led to a good energy balance of the code. 

 UoI – Data Analytics in Earth Science: By completely rewriting two of their codes 
(NextDBSCAN and NextSVM) UoI made a huge step towards Exascale. Both 
applications are now much stronger than the previous applications. Research 
within the project indicates that NextDBSCAN is now a good candidate 
application for Exascale systems, using both CPUs and GPUs. The results with 
the Horovod framework for distributed deep learning show that more work must 
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be done in order for it to reach Exascale system potential. Another achievement 
during the DEEP-EST project was the development of the Magma library to 
ease the porting efforts.  

 CERN – High Energy Physics: The DEEP-EST project was an important part 
for the High Energy Physics community on the way towards Exascale HPC 
systems for CMS reconstruction workloads as well as for CMS classification. 
Porting the most time critical parts of the reconstruction to NVIDIA GPUs 
resulted in a significant performance gain. The work done in DEEP-EST has 
already been included in the official CMSSW stack. 

In addition to the evaluation of the MSA concept the DEEP-EST project allowed to gain 
many valuable experiences: 

8.8.2 Portability nearly as important as performance 

In the beginning of the project, and so also during the planning phase of the project, 
the idea was to equip the ESB with many-core CPUs of the Intel Xeon Phi series. After 
a few months within the project it became clear that this would not be possible, so the 
plan changed to using GPUs. This led to some difficulties for some of the applications, 
because they did not have GPU-code available. For example, KU Leuven had only a 
version of xPic optimised for Intel Xeon Phis. Also UoI and CERN had only CPU based 
code (with multi- and many-core versions). Each one of the three application partners 
used a different approach to implement a new GPU version, all of them striving towards 
a portable solution to become vendor independent. 

KU Leuven used the pragma based OpenMP 5.0 offload (Section 5.4.3.2 and Section 
8.4.3.4 of this book). UoI developed Magma, a C++ header library, that makes 
extensive use of C++ templates to offer compile-time polymorphism for increased 
usability at the expense of a small compile-time overhead (Section 6.4), and CERN 
made use of the oneAPI framework as a portability platform (Section 7.4). 

8.8.3 Different code versions for different purposes 

During the project we noticed that for some of the applications it makes sense to have 
different code versions for different purposes: 

 If we take a look at GROMACS from NCSA we see that the non-offload version 
is very efficient for small and medium scale problems, whereas the offload 
version is very efficient for large scale problems, and the version using FFM is 
more efficient for extremely big problems than the PME version.  
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 For NEST from NMBU different optimisations are needed to achieve a good 
performance on runs on a small number of nodes, than when targeting a large 
amount of nodes. 

 

8.8.4 FPGA challenges 

It turned out that programming the FPGAs was more complicated than expected. In 
ASTRON’s case, a complete code restructuring was needed to port the imager from 
one generation of FPGAs (Arria10) to the new one (Stratix10). Compiling FPGA code 
takes a very long time (in ASTRONs case sometimes up to 24 hours) which makes it 
a really time consuming work. A detailed explanation on the experience with the FPGA 
programming is given in Section 4.4.6. Nevertheless the experiences gained are very 
helpful for other applications where FPGAs are indispensable, such as in the upgrade 
of the LOFAR stations 

 

8.8.5 Conclusion 

This report on applications experience clearly shows that the DEEP-EST system is 
flexible enough to accommodate the requirements coming from different problem 
domains. Each co-design application has benefitted from the experience made by 
other applications, as well as from the support from the technical consortium members 
who developed the hardware and software in the project. DEEP-EST has also shown 
that an important investment in effort and time is required to enable highly complex 
HPC applications to run efficiently on the next generation supercomputers, but that 
these efforts definitely do pay off. After over three years of joint work, the DEEP-EST 
applications are better prepared to exploit heterogeneous supercomputers as those 
expected in the Exascale era. 

 




