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9.1 Introduction 
The modular supercomputing architecture (MSA) is a novel approach to implement 
heterogeneous supercomputing125. MSA’s major differentiation to other types of 
approaches is that it defines a new intermediate level in the computer architecture 
hierarchy, which is located between the node- and the system levels. In MSA, subsets 
of nodes are grouped into special "computational modules" according to their common 
characteristics and algorithmic features of the corresponding subtasks. 

For example, CPU-only nodes are put together into a cluster module, GPU accelerated 
nodes into a booster module, or quantum devices constitute a quantum module. A 
Modular Supercomputer is born when these modules, each of which is a high 
performance computer in its own right, are interconnected via a high-speed network, 
and are integrated by a common software stack that allows the dynamical allocation of 
resources from and between all modules. 

This meta-architecture allows to dynamically reserve and allocate hardware resources 
and enables users to select the most suitable mix of resources at each time, respecting 
the characteristics and requirements of their code portions. 

In this chapter, the MSA concept is explained in more detail to dispel some frequent 
misconceptions. For better understanding, MSA is contrasted to the conventional, 
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approach of tightly integrating all possible kinds of compute and memory elements 
within each node, and then replicating this entity several thousand times to build up a 
“monolithic” HPC system. We argue that the two architectural lines are not mutually 
exclusive, but that their combination by “integrating” a tightly integrated module into 
MSA can be beneficial to end users and operators. 

9.2 Partitions vs. modules 
Very diverse application profiles of HPC users, various kinds of processor types, and 
pressure on budgets for both procurement and operational costs have made 
heterogeneity of computers the rule rather than an exception (e.g. 126,127,128). HPC 
providers deploy systems that combine different kinds of CPUs and accelerators (in 
general GPUs), organized in various node configurations. Frequently, supercomputers 
have multiple compute partitions, with different amounts of memory per node, with or 
without accelerators, even with different numbers or generations of GPUs. 

Often the two fundamental questions are raised: when is a heterogeneous computer 
considered to be an MSA system? What is the difference between heterogeneous 
computing and modular supercomputing? The answer to these questions lies more in 
the manner the system can be operated rather than on its specific hardware 
configuration. It is the software stack that “modularizes” a heterogeneous 
supercomputer. 

As a principle, MSA strives for a homogeneous internal configuration within each 
hardware module and achieves global heterogeneity by interconnecting the different 
modules enabling dynamical allocation of compute resources from several modules 
from a given program or workflow. One reason for this approach is that combining too 
many different computing resources within a single node makes it very difficult to share 
them efficiently between users with different requirements for those resources. In 
addition, many programs use only one variant of processors on such a “fat node” in a 
given part of code. All of this results in many elements in the supercomputer being idle 
and potentially continuing to consume power. Such underutilization can be avoided by 
MSA. 

The first MSA system deployed in the DEEP project was a cluster-booster platform 
where the cluster was composed of general-purpose (Intel Xeon) CPUs on an 
InfiniBand network, and the booster consisted of many-core accelerators (host-less 
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Intel Xeon Phi) on an Extoll network129. However, this maximal separation 
(disaggregation) of CPUs and accelerators is one of many potential hardware 
realizations but it is not the defining criterion of the MSA. As a matter of fact, in most 
recent modular supercomputers (e.g. JUWELS130 and MELUXINA131) the booster is a 
GPU-accelerated platform where management-CPUs are used to orchestrate the 
GPUs. Here, the booster node itself obviously is a heterogeneous system, but the 
computational power, to the largest extent, is delivered by the GPUs, while the host-
CPUs clearly play a secondary role in so far as they mainly support the GPUs to fulfil 
their task. 

It is indeed possible to choose a different interconnect technology for each module, as 
was the case in the first DEEP prototype, but this is not a criterion for defining 
modularity. Avoiding gateways and network bridges between modules, as of course 
expected and experienced on physical systems, leads to better performances. For this 
reason, the latest MSA systems use a homogenous interconnect and integrate 
modules in a common fabric. 

Therefore, from the hardware point of view, a supercomputer with two or more 
distinctive partitions can be considered as a modular supercomputer. The decisive 
criterion for modularity is whether users can, at the same time, reserve resources on 
multiple modules and can run their applications across them in a distributed manner, 
performing communication and data transfers between these modules at runtime. 
What is more, modularity allows dynamically changing the size of the partitions on the 
modules according to the needs of the codes at runtime. 

Modularity as operational and usage mode requires a software stack and programming 
environment that supports its requirements. The scheduler and resource manager 
must be aware of the hardware partitions and their features, and provide an interface 
enabling users to define the mix of resources to be employed in each partition. In the 
ideal case, dynamic allocation of the diverse resources is supported, so that each 
compute element is assigned to the job, when the execution of the application phase 
that needs it, starts, and only then. Outside these phases, these computing resources 
are available for other jobs. For example, for applications organized as job chains, 
different time windows can be set up for reserving the individual partitions. These 
features as well as multi-tenant use of partitions are important topics of research for 
the effective realization of modularity.  
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Modularity must also be enabled in the programming environment and the runtime 
system. Sections of the application’s code have to be programmed and compiled to 
run on the hardware of the modules where they shall be executed. The various 
executables must be enabled to communicate with each other (e.g., via MPI or some 
other communication interface). This requires changes at the lower layers of the 
programming models that interface to the different kinds of compute (and possibly 
interconnecting) hardware. All these features were developed and implemented in the 
ParaStation Modulo132,133 software suite in the course of the European DEEP projects. 
Furthermore, profiling and performance analysis tools running on MSA systems must 
be capable of collecting hardware counters across partitions and understand the 
correlation between them for modularity-enabled applications. 

All these software components together have a common goal: enable each part of an 
application to utilize the best suitable selection of resources. This goal, aiming at 
globally maximizing the use of a heterogeneous set of closely interconnected 
supercomputers, is what characterizes a Modular Supercomputer.  

9.3 Data movement 

Dividing computing resources into different modules as strived for in MSA could raise 
concerns about performance degradation in communication and data transfers 
between computing elements that are separated from each other. We have already 
argued in Section 9.2 that such segregation is not necessary in a strict sense when 
one computes in a “modular” manner. Nevertheless, we would like to adduce some 
arguments addressing concerns about data-movement. Such concerns are often 
brought forward to favour monolithic supercomputers that integrate many different 
kinds of compute resources within each node, colloquially called “fat” node. 

Let us first state that in most situations of parallel data processing data movements 
between nodes cannot be avoided. Only so-called embarrassingly parallel problems 
can work entirely without significant inter-node data movement. For the rest, simple to 
sophisticated strategies are used to minimize the surface-to-volume ratio, particularly 
for regular problems. There are data-centric concepts as well to avoid data movement 
– at the expense of more computational operations or increased memory consumption. 
All these strategies must be and indeed are applied within system modules in the MSA. 
Therefore, in the following, we focus on the particular case of inter-module 
communication only. 
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When switching between different accelerator types, the impact of data movement on 
performance depends on the volume and frequency of data exchange. For a given 
application, these factors are correlated with the computational size of the code 
sections involved in the communication:  

i. Small kernels: a typical example is often given by the innermost loop of an 
application, where a small but computationally intensive calculation is repeated 
at high frequency for a given number of iterations. This kind of computation 
requires very small latencies and directly profits from intra-node acceleration. 
Such type of computations are in fact the traditional target of CPU-GPU 
systems, where the main program is executed on the host CPU and the small – 
in the sense that they fit on the GPU memory – but computationally intensive 
kernels are offloaded to the GPU.  

ii. Large code parts: in complex applications, and especially those that simulate 
multi-scale or multi-physics phenomena, code partitioning is done at a much 
coarser level. Different larger portions of the code are responsible for computing 
specific parts of the overall problem. They most of the time communicate 
internally within the respective code part, exchanging information with the rest 
of the code parts relatively infrequently and mainly to share intermediate results 
and to update parameters. As the different code parts might also have very 
different structures and requirements, they might profit from different types of 
hardware. This is where inter-module communication in MSA is required, which 
happens between larger code elements such as (library) functions. Between 
such a coarse-grained code partitions, data movement (off module) involves a 
rather small amount of data to be exchanged compared to module-resident (on-
module) data movement.  

Therefore, intra-node heterogeneity applies to on-node and on-module computation of 
smaller code elements (case (i)), while MSA operates off-module on bigger code-
structures of an application or workflow, i.e., large code elements (case (ii)).  

Increasing the compute-power of a single node by including multiple (heterogeneous) 
accelerators can be very helpful to speed-up the execution of small code kernels. 
However, this makes the supercomputer more imbalanced, and therefore less efficient 
as to running system-wide problems scalably. A very strong pressure is set on the 
system network, which cannot increase the bandwidth between nodes at the same rate 
as the increasing computational power inside the nodes does. In consequence, data 
movement off the node must be avoided, or the advantage gained by the kernel speed-
up may be nullified. 

Furthermore, data movements between different accelerators inside a highly 
heterogeneous node are not necessarily cheap either. They would be if all accelerators 
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could access the same (high-bandwidth) main memory in the node. However, if the 
main memory is standard DDR-RAM it will always be faster to stay within one single 
accelerator’s (HBM) memory. The situation is even worse when PCIe is involved in 
linking the memories of the various accelerators, as is the case today. The 
communication performance between accelerators is then only marginally different 
from off-node communication. All current monolithic heterogeneous HPC systems 
connect their computing elements via PCIe, which requires expensive cross-element 
transfers and leads to a similar impact on data movement as the inter-module 
communication in MSA does. 

The strongest caveat one often hears as to separation of resources in MSA is the 
occurence of increased latency for inter-module communication. This effect certainly 
is most acute when the data have to pass network gateways, i.e., when the modules 
utilize different interconnect technologies and are connected via a network bridge. 
However, in case the same or a fully compatible network technology is used across 
the entire MSA and gateways do not need to be involved, the inter-module 
communication capabilities are indeed comparable in capability and latency to the 
inter-node communication as given within an HPC module.  

But even on a homogeneous network it is obvious that the latency between a CPU on 
the cluster and a GPU on the booster, is slightly higher than if they were located inside 
the same node, where they save the hop over the interconnect. It is for this reason that 
it is not advisable to offload small kernels between modules in MSA. Therefore, as 
already stated, in contrast to offloading small kernels as done on node (see in case 
(i)), in MSA code-partitioning is carried out at a much coarser granularity (see case 
(ii)). Moreover, on these coarse structures, one can benefit from algorithmic methods 
in order to reduce data movement between the MSA modules. For example, when 
running larger code parts on the different modules in parallel, communication between 
the modules is required much less frequently than within the module, dramatically 
reducing the impact of the inter-module latency. Finally, to accelerate small compute 
kernels, MSA can resort to exactly the same strategy as one does on the monolithic 
fat node system (case (i)). MSA can thus take full advantage of the standard strategy 
for accelerating small computational cores, while providing a massive improvement in 
speed when accelerating large compute kernels.  

In conclusion, the communication and data movement strategy of MSA relies on 
executing fine-grained communication within the modules, while only coarse-grained 
state-exchange information is transferred between modules. This allows both the 
individual application kernels within a module to be accelerated on the nodes, and the 
entire application workflow between modules to be boosted via a matching set of 
resources for each large section of code. In contrast, a monolithic system composed 
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of identical nodes each containing a diversity of compute and acceleration resources 
has no means to efficiently accommodate the coarse-grained granularity of case (ii), 
which leads to resource under-utilization. 

9.4 Energy efficiency 

Many strategies are applied today in HPC centres to optimize energy efficiency. They 
comprise the use of low-power computing elements and/or accelerators, shutting-down 
unused resources, holistic system monitoring, optimizing the site-infrastructure and 
system cooling (e.g., through direct liquid cooling), actively re-using waste heat, etc. 
All these approaches can profit from MSA in the same manner as known from any 
other heterogeneous architecture. What is more, MSA operates at a coarse-grained 
scale that naturally matches the sub-second timescales handled by monitoring and 
cooling systems. Heterogeneous System-on-Chip (SoC) approaches – which 
represent the smallest form of intra-node heterogeneity – are governed by much 
smaller spatial-scales and shorter time-scales (micro- to nanoseconds). Holistic 
monitoring starting out from this level would require a vertical integration of monitoring 
capabilities from very deep (SoC-level) up to very high (infrastructure-level). This 
ambition constitutes a complicated technological challenge and may not be feasible 
due to timescales involved differing by orders of magnitude134. 

On top of the general methodology to save energy as mentioned above, MSA can 
increase energy efficiency by applying three additional strategies:  

1.) Targeted hardware scale-out: the dimensions of the individual MSA-modules 
are determined by the requirements of the user-portfolio running on the MSA 
system, as well as by the energy efficiency of its components. For instance, a 
cluster module, where applications in need for high single-thread performance 
run, is composed of relatively power-hungry general purpose CPUs and is 
therefore kept rather small. The booster, on the other hand, which runs highly-
scalable applications (or parts thereof) achieves a very high compute 
performance using more energy-efficient accelerators. In MSA, only this part of 
the system is scaled-out to thousands or tens-of-thousands of nodes, if needed, 
in contrast to fat node systems where complex and expensive fat nodes need 
to be scaled out.  

2.) Tailor system to application needs: by running each part of the user code on 
the kind of node that allows best performance, improved application efficiency 
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and performance is achieved. The speed-up gained by the individual 
applications translates into a shorter execution time, which typically leads to 
lower overall energy consumption.  

3.) Maximize use of resources: MSA enables dynamic scheduling, reservation 
and allocation of resources and makes them available for the job only for the 
relevant time window, while the rest of the time they are free to be used by 
others. This enables more efficient resource sharing, and therefore achieves a 
higher utilization of the individual components, reducing idle time and 
unnecessary energy waste. In contrast, on a monolithic supercomputer with fat 
nodes, all resources of all utilized fat nodes are blocked during a job’s runtime. 
Sharing of nodes is expected to be inefficient due to the impact of jitter effects 
induced by co-utilization135 on such fat nodes. 

As far as system scaling is concerned, one might argue against point (1) that in a 
booster built as a GPU-accelerated system, the necessary amount of (power hungry) 
host-CPUs also grows with system size. This issue is, however, readily avoided by 
choosing a suitable, low-power CPU for the booster, as the CPU only needs to manage 
the GPUs and not to perform relevant application computation. It is expected that the 
market will offer GPU designs with integrated orchestrator CPU cores in the near 
future. This would make GPUs much more independent and allow building a true GPU-
only booster. 

Building “lean” booster nodes employing low-power management-CPUs (or host-less 
GPUs) also addresses point (3), as it minimizes (eventually even down to zero) the 
energy consumption of host CPUs, which are among the very few resources in an MSA 
system that are prone to be idle, since they are less intensively used for application 
computation. 

Here it is worth mentioning that maximum resource utilization (3) is an important 
advantage of MSA compared to monolithic systems based on highly-heterogeneous 
(fat) nodes. An increased intra-node heterogeneity leads to underutilization of 
resources, since for a given job either CPUs or GPUs, but very rarely different 
accelerators, are simultaneously in use. The unused node-elements run idle and 
continue to consume power. Given a broad portfolio of applications, this problem 
cannot simply be overcome by choosing the best-suited accelerator mix for the 
heterogeneous node, as this will always introduce a fixed ratio between CPUs and 
accelerators. This ratio will support only a few applications optimally while others have 
their sweet-spot at higher or lower ratio. MSA, on the other hand, is fully flexible and 
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dynamic in the assignment of resources even during program execution, which is its 
most characteristic new feature of MSA. 

In order to compensate these limitations of fat nodes, some chip-designers propose 
the idea of so-called “dark silicon”. It leverages the concept of integrating an amount 
of computational resources that deliberately would exceed the chip’s actual power 
envelope, while selectively switching some resources on and off when possible. In 
principle, this strategy can be equally applied to heterogeneous chip designs by 
powering off unused accelerators units. However, it is questionable if steering the 
power is possible at such extremely small time-scales (see case (i) in Section 9.3) 
required by the tight integration of accelerators within a chip. More importantly, even if 
the power for the processing elements is switched on only during operation, the 
investment made for the switched-off elements is lost for this idle time. Taking into 
account that during the lifetime of an HPC system, the hardware investment is about 
two thirds of the total cost of ownership, the energy adjustment as just described can 
only partially compensate for the underutilization. We argue that maximizing resource 
utilization by MSA is a fundamentally better approach to increase energy efficiency and 
reduce cost, and increases the total scientific throughput of HPC systems. 

Beyond that, the central assumption behind the dark-silicon strategy is that the cost of 
transistors’ silicon is negligible when compared to the power-consumption of running 
them. Reaching the end of Moore’s law by now and observing the worrying situation of 
the silicon industry since 2020 lets us have serious doubts on this underlying 
assumption of the dark-silicon strategy. 

The challenge of connecting the additional transistors should not be neglected either. 

Highly integrated systems are widely used in the mobile and embedded markets, 
where space and power constraints play a crucial role. Need for high energy efficiency 
together with moderate prices of mass-market components have been arguments for 
applying similar strategies in HPC. However, mobile and embedded markets are 
completely different from the HPC market. In mobile devices, a small number of 
heterogeneous elements (thin cores, fat cores, GPU, memory, flash, modem, AI,…) 
are interconnected via standardized interfaces and integrated on an SoC. Until now, 
HPC has not yet settled on a standard interface for the hardware elements, which limits 
the possible combinations of elements, and the bandwidth demand in between the 
elements is significantly higher than on the mobile devices. The main motivation for a 
SoC in mobile devices is the level of integration and low production costs, rather than 
bandwidth and latency as in HPC. In HPC, high bandwidth and latency requirements 
lead to the use of highly sophisticated interposers. Considering the technological 
challenges and the economic constraints, which these intermediate layers are subject 
to, their feasibility has not really been proven to date. Therefore, the amount of dark 
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silicon elements is limited by both the technology of the interposer and the cost of the 
silicon.  

9.5 System integration 
For more than a decade, standard accelerators have been integrated within fat nodes 
to achieve very high peak performance. The main disadvantages of this approach, i.e., 
underutilization of resources and shared network interfaces, have been discussed 
extensively above. Today, its strongest advantage as to closer integration with the CPU 
resources is still diminished by the lack of a technology, where CPU and accelerators 
have access to shared high-bandwidth memory. Heterogeneous chips (e.g., GPUs 
with integrated CPU cores and dynamical mutual assignment), which are under 
development, promise access to shared high-bandwidth memories. If such chips reach 
the market, they will benefit both monolithic and modular architectures that, for 
example, could build a cheaper and more energy-efficient booster by getting rid of 
management CPUs. 

Interestingly, the MSA technology also enables the coupling of modules that are 
operated by GPUs from different manufacturers, for example. In this case, it is not so 
much about accelerating computations in cluster-booster mode, but rather about 
equipping the overall system with various accelerator technologies. This strategy 
makes it possible, on the one hand, to make the most suitable technology available to 
the user in the workflow and, on the other hand, to still make the entire system 
accessible to applications that have very large memory and computing requirements. 
Such type of HW requirements can currently only be delivered by MSA. 

From a physical system integration perspective, building, maintaining, and operating 
MSA platforms are just as complex as monolithic systems: the single modules itself 
are similar to monolithic systems, they just use slim nodes in contrast to fat complex 
nodes. Interconnecting them is a problem that is solved by using the right system 
software, as proven by JUWELS. MSA-modules can also be adapted over time to meet 
new user requirements by substituting modules or adding new ones when enhanced 
technology emerges. In fact, MSA also opens up opportunities to integrate presumably 
disruptive technologies into HPC systems, such as neuromorphic devices or quantum 
computers. They are still in very early development stages, but have already 
demonstrated impressive performances for some specific applications. 

The inclusion of neuromorphic or quantum modules in the MSA might facilitate their 
adoption by the wider user communities. For example, it has been demonstrated that 
quantum computers are extremely efficient to solve specific kinds of problems such as 
high-dimensional optimization scenarios. While it is very unlikely to see a large-scale 
HPC application executed fully on a quantum computer anytime soon, it seems 
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worthwhile to explore an application running e.g., on the cluster module of an MSA, 
which offloads an optimization problem as part of its code to be solved by a quantum 
module. These types of embedded optimization problems are ideal for MSA, as they 
consist of a well-isolated and large part of the code, with only small amounts of data 
being exchanged between the cluster and the quantum module – which is again ideal 
for a quantum computing system allowing for small data rates only. This coarse-
grained quantum-hybrid strategy allows for the exploration of quantum computing 
especially for applied problems from science and industry already today, in particular 
when a quantum annealer like a D-Wave system is exploited. 

9.6 Application scalability 
Another frequently expressed misconception about MSA is the fear of hindering 
application-scalability by the need to spread the code components across vastly 
different module architectures until all available compute resources are occupied. 
However, for the analysis of the scalability of codes on the MSA, only the booster 
module should be considered. As with Amdahl’s law, the maximum problem size and 
maximum scalability is always given by the highly scalable part of the code that, in 
MSA, runs on the scalable booster. In addition to that, decoupling the less-scalable 
code parts from the high-scaling ones and running them on the cluster improves the 
overall application scalability: the high-scaling part can scale unhindered on the 
booster, while the low-scaling part is speed-up through the high single-thread 
performance of the cluster module. 

On the other hand, a justified criticism of MSA – or rather of the current software 
environment – is that it imposes a relatively high burden on application developers to 
prepare their codes for execution in a multi module mode. First of all, it is emphasized 
that such code-distribution is an opportunity in MSA not a general obligation. To give 
an example, highly scalable applications with an intrinsic monolithic structure (e.g., 
tightly coupled differential operations on regular lattice systems) should never be 
spanned across modules, but rather run entirely within the booster. 

Candidate MSA codes from multiphysics and multiscale applications to be coarse-
grained assigned to modules must undergo a series of analyses and transformations: 
any such application has to be analyzed as to its internal structure and potential 
performance bottlenecks, code parts need to be identified and ported to the given 
module architectures using a suitable programming model (e.g., CUDA or OpenACC 
for GPUs), and scaling studies need to be performed with relevant and suitable use-
cases to find their best modus operandi and the appropriate number of nodes on each 
module. All these steps are summarized in the best practices guide provided as 
Chapter 8 of this book. Many of the adaptations to optimize application performance 
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on specific modules (e.g., increase vectorisation, keeping data locality, proper 
organisation of data structures, etc.) are necessary on any modern heterogeneous 
compute platform, not only on MSA. The additional MSA-specific considerations are 
those related to the implementation of a coarse-grained code partition. 

The additional effort of porting codes to MSA might scare application developers. While 
so far, only a few applications are enabled to run in multi-module mode, from a user 
and computing centre perspective MSA is even beneficial for single-module 
operations, as the different modules provide a variety of computing resources for a 
diverse application portfolio of an HPC centre, even if each code runs on only one type 
of node. Still, in order to improve user experience and to promote the modularization 
of HPC applications, the MSA software stack is in continuous development in order to 
make the MSA-specific and the more general code porting actions as comfortably as 
possible: this is the goal of the EU-funded DEEP-SEA project, which started in April 
2021 and will run for three years136. It will continue the software development efforts of 
the DEEP project series, which already delivered an MSA-enabled runtime system 
(ParaStation Modulo), as well as a scheduler and a resource manager targeting 
heterogeneity at system level. Advanced features for a better support of compute and 
memory heterogeneity, enhanced malleability and interoperability features, co-
scheduling aspects, and performance portability will be developed in DEEP-SEA.  

9.7 Conclusion 

The goals of MSA are to offer the best system configuration to a portfolio of applications 
with very different profiles and requirements, to assign the best suited hardware 
resources to each of them (and each of their code-parts), and to maximize system 
usage and energy efficiency by enabling an efficient sharing of compute resources 
overall. Most of the reservations for which MSA is often criticized and contrasted with 
other alternative heterogeneous computing approaches have their roots in simple 
misunderstandings about basic MSA principles. 

The MSA is fundamentally different from other heterogeneous computing approaches, 
and in particular from highly integrated monolithic systems, in that system-level 
heterogeneity is achieved by combining a set of (rather) homogeneous computational 
modules, which allows coarse-grained partitioning of application code among these 
modules. Multi-module execution is foreseen mainly for applications with an intrinsic 
multi-physics or multi-scale nature. The associated large code parts run within the 
modules exchanging a limited amount of data between each other at relatively low 
frequency. Performance is therefore not impacted by the slightly increased inter-
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module latency. Intra-node heterogeneity, on the other hand, is suitable for low-
granularity operations, such as the execution of small but computationally intensive 
kernels. Here data is exchanged at a much higher rate and low latency is very crucial 
to achieve performance. 

Because the operational levels of both approaches to heterogeneous computing (MSA 
and highly-integrated node designs) are so different, it suggests itself to combine them. 
Therefore, the MSA welcomes the inclusion of heterogeneous modules, and, in fact, 
current MSA systems do contain them. The combination of different modules with 
diverse node configurations, some homogenous, some heterogeneous, makes MSA 
extremely flexible and adaptable to any application portfolio. Further benefits include 
the possibility to scale out only the most energy-efficient modules of the system, 
keeping the power-hungry modules at a relatively low node count but still available for 
the user codes that require them, and the ability to include modules based on disruptive 
computing technologies such as quantum technologies.  
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