
9. Critical Analysis of the Modular Supercomputing Architecture

 233 DEEP-EST

9 Critical Analysis of the Modular Supercomputing
Architecture

Estela Suarez(1), Norbert Eicker(1,2), Thomas Moschny(3), Thomas Lippert(1,4)

(1) Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Leo Brandt
Straße, 52428 Jülich, Germany

(2) Fakultät für Mathematik und Naturwissenschaften, Bergische Universität
Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

(3) ParTec AG, Possartstraße 20, 81679 Munich, Germany

(4) Goethe-Universität Frankfurt, Frankfurt Institute for Advanced Studies (FIAS).
Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany

e.suarez@fz-juelich.de

9.1 Introduction
The modular supercomputing architecture (MSA) is a novel approach to implement
heterogeneous supercomputing125. MSA’s major differentiation to other types of
approaches is that it defines a new intermediate level in the computer architecture
hierarchy, which is located between the node- and the system levels. In MSA, subsets
of nodes are grouped into special "computational modules" according to their common
characteristics and algorithmic features of the corresponding subtasks.

For example, CPU-only nodes are put together into a cluster module, GPU accelerated
nodes into a booster module, or quantum devices constitute a quantum module. A
Modular Supercomputer is born when these modules, each of which is a high
performance computer in its own right, are interconnected via a high-speed network,
and are integrated by a common software stack that allows the dynamical allocation of
resources from and between all modules.

This meta-architecture allows to dynamically reserve and allocate hardware resources
and enables users to select the most suitable mix of resources at each time, respecting
the characteristics and requirements of their code portions.

In this chapter, the MSA concept is explained in more detail to dispel some frequent
misconceptions. For better understanding, MSA is contrasted to the conventional,

125 E. Suarez, N. Eicker, Th. Lippert, "Modular Supercomputing Architecture: from idea to production",

Chapter 9 in Contemporary High Performance Computing: from Petascale toward Exascale, Volume
3, pp 223-251, Ed. Jeffrey S. Vetter, CRC Press. (2019) [ISBN 9781138487079]

Porting applications to a Modular Supercomputer

DEEP-EST 234

approach of tightly integrating all possible kinds of compute and memory elements
within each node, and then replicating this entity several thousand times to build up a
“monolithic” HPC system. We argue that the two architectural lines are not mutually
exclusive, but that their combination by “integrating” a tightly integrated module into
MSA can be beneficial to end users and operators.

9.2 Partitions vs. modules
Very diverse application profiles of HPC users, various kinds of processor types, and
pressure on budgets for both procurement and operational costs have made
heterogeneity of computers the rule rather than an exception (e.g. 126,127,128). HPC
providers deploy systems that combine different kinds of CPUs and accelerators (in
general GPUs), organized in various node configurations. Frequently, supercomputers
have multiple compute partitions, with different amounts of memory per node, with or
without accelerators, even with different numbers or generations of GPUs.

Often the two fundamental questions are raised: when is a heterogeneous computer
considered to be an MSA system? What is the difference between heterogeneous
computing and modular supercomputing? The answer to these questions lies more in
the manner the system can be operated rather than on its specific hardware
configuration. It is the software stack that “modularizes” a heterogeneous
supercomputer.

As a principle, MSA strives for a homogeneous internal configuration within each
hardware module and achieves global heterogeneity by interconnecting the different
modules enabling dynamical allocation of compute resources from several modules
from a given program or workflow. One reason for this approach is that combining too
many different computing resources within a single node makes it very difficult to share
them efficiently between users with different requirements for those resources. In
addition, many programs use only one variant of processors on such a “fat node” in a
given part of code. All of this results in many elements in the supercomputer being idle
and potentially continuing to consume power. Such underutilization can be avoided by
MSA.

The first MSA system deployed in the DEEP project was a cluster-booster platform
where the cluster was composed of general-purpose (Intel Xeon) CPUs on an
InfiniBand network, and the booster consisted of many-core accelerators (host-less

126 http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
127 https://docs.nersc.gov/systems/cori/
128 https://www.bsc.es/marenostrum/marenostrum/mn3

9. Critical Analysis of the Modular Supercomputing Architecture

 235 DEEP-EST

Intel Xeon Phi) on an Extoll network129. However, this maximal separation
(disaggregation) of CPUs and accelerators is one of many potential hardware
realizations but it is not the defining criterion of the MSA. As a matter of fact, in most
recent modular supercomputers (e.g. JUWELS130 and MELUXINA131) the booster is a
GPU-accelerated platform where management-CPUs are used to orchestrate the
GPUs. Here, the booster node itself obviously is a heterogeneous system, but the
computational power, to the largest extent, is delivered by the GPUs, while the host-
CPUs clearly play a secondary role in so far as they mainly support the GPUs to fulfil
their task.

It is indeed possible to choose a different interconnect technology for each module, as
was the case in the first DEEP prototype, but this is not a criterion for defining
modularity. Avoiding gateways and network bridges between modules, as of course
expected and experienced on physical systems, leads to better performances. For this
reason, the latest MSA systems use a homogenous interconnect and integrate
modules in a common fabric.

Therefore, from the hardware point of view, a supercomputer with two or more
distinctive partitions can be considered as a modular supercomputer. The decisive
criterion for modularity is whether users can, at the same time, reserve resources on
multiple modules and can run their applications across them in a distributed manner,
performing communication and data transfers between these modules at runtime.
What is more, modularity allows dynamically changing the size of the partitions on the
modules according to the needs of the codes at runtime.

Modularity as operational and usage mode requires a software stack and programming
environment that supports its requirements. The scheduler and resource manager
must be aware of the hardware partitions and their features, and provide an interface
enabling users to define the mix of resources to be employed in each partition. In the
ideal case, dynamic allocation of the diverse resources is supported, so that each
compute element is assigned to the job, when the execution of the application phase
that needs it, starts, and only then. Outside these phases, these computing resources
are available for other jobs. For example, for applications organized as job chains,
different time windows can be set up for reserving the individual partitions. These
features as well as multi-tenant use of partitions are important topics of research for
the effective realization of modularity.

129 N. Eicker, Th. Lippert, Th. Moschny, and E. Suarez, "The DEEP Project - An alternative approach to

heterogeneous cluster-computing in the many-core era, Concurrency and computation: Practice and
Experience, Vol. 28, p. 2394–-2411 (2016), doi = 10.1002/cpe.3562.

130 https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
131 https://luxprovide.lu/technical-structure/

Porting applications to a Modular Supercomputer

DEEP-EST 236

Modularity must also be enabled in the programming environment and the runtime
system. Sections of the application’s code have to be programmed and compiled to
run on the hardware of the modules where they shall be executed. The various
executables must be enabled to communicate with each other (e.g., via MPI or some
other communication interface). This requires changes at the lower layers of the
programming models that interface to the different kinds of compute (and possibly
interconnecting) hardware. All these features were developed and implemented in the
ParaStation Modulo132,133 software suite in the course of the European DEEP projects.
Furthermore, profiling and performance analysis tools running on MSA systems must
be capable of collecting hardware counters across partitions and understand the
correlation between them for modularity-enabled applications.

All these software components together have a common goal: enable each part of an
application to utilize the best suitable selection of resources. This goal, aiming at
globally maximizing the use of a heterogeneous set of closely interconnected
supercomputers, is what characterizes a Modular Supercomputer.

9.3 Data movement

Dividing computing resources into different modules as strived for in MSA could raise
concerns about performance degradation in communication and data transfers
between computing elements that are separated from each other. We have already
argued in Section 9.2 that such segregation is not necessary in a strict sense when
one computes in a “modular” manner. Nevertheless, we would like to adduce some
arguments addressing concerns about data-movement. Such concerns are often
brought forward to favour monolithic supercomputers that integrate many different
kinds of compute resources within each node, colloquially called “fat” node.

Let us first state that in most situations of parallel data processing data movements
between nodes cannot be avoided. Only so-called embarrassingly parallel problems
can work entirely without significant inter-node data movement. For the rest, simple to
sophisticated strategies are used to minimize the surface-to-volume ratio, particularly
for regular problems. There are data-centric concepts as well to avoid data movement
– at the expense of more computational operations or increased memory consumption.
All these strategies must be and indeed are applied within system modules in the MSA.
Therefore, in the following, we focus on the particular case of inter-module
communication only.

132 ParaStation Modulo. https://par-tec.com/software/
133 S. Pickartz, Virtualization as an enabler for dynamic resource allocation in HPC, Dissertation, RWTH

AachenUniversity, Aachen, 2019. https://doi.org/10.18154/RWTH-2019-02208 .

9. Critical Analysis of the Modular Supercomputing Architecture

 237 DEEP-EST

When switching between different accelerator types, the impact of data movement on
performance depends on the volume and frequency of data exchange. For a given
application, these factors are correlated with the computational size of the code
sections involved in the communication:

i. Small kernels: a typical example is often given by the innermost loop of an
application, where a small but computationally intensive calculation is repeated
at high frequency for a given number of iterations. This kind of computation
requires very small latencies and directly profits from intra-node acceleration.
Such type of computations are in fact the traditional target of CPU-GPU
systems, where the main program is executed on the host CPU and the small –
in the sense that they fit on the GPU memory – but computationally intensive
kernels are offloaded to the GPU.

ii. Large code parts: in complex applications, and especially those that simulate
multi-scale or multi-physics phenomena, code partitioning is done at a much
coarser level. Different larger portions of the code are responsible for computing
specific parts of the overall problem. They most of the time communicate
internally within the respective code part, exchanging information with the rest
of the code parts relatively infrequently and mainly to share intermediate results
and to update parameters. As the different code parts might also have very
different structures and requirements, they might profit from different types of
hardware. This is where inter-module communication in MSA is required, which
happens between larger code elements such as (library) functions. Between
such a coarse-grained code partitions, data movement (off module) involves a
rather small amount of data to be exchanged compared to module-resident (on-
module) data movement.

Therefore, intra-node heterogeneity applies to on-node and on-module computation of
smaller code elements (case (i)), while MSA operates off-module on bigger code-
structures of an application or workflow, i.e., large code elements (case (ii)).

Increasing the compute-power of a single node by including multiple (heterogeneous)
accelerators can be very helpful to speed-up the execution of small code kernels.
However, this makes the supercomputer more imbalanced, and therefore less efficient
as to running system-wide problems scalably. A very strong pressure is set on the
system network, which cannot increase the bandwidth between nodes at the same rate
as the increasing computational power inside the nodes does. In consequence, data
movement off the node must be avoided, or the advantage gained by the kernel speed-
up may be nullified.

Furthermore, data movements between different accelerators inside a highly
heterogeneous node are not necessarily cheap either. They would be if all accelerators

Porting applications to a Modular Supercomputer

DEEP-EST 238

could access the same (high-bandwidth) main memory in the node. However, if the
main memory is standard DDR-RAM it will always be faster to stay within one single
accelerator’s (HBM) memory. The situation is even worse when PCIe is involved in
linking the memories of the various accelerators, as is the case today. The
communication performance between accelerators is then only marginally different
from off-node communication. All current monolithic heterogeneous HPC systems
connect their computing elements via PCIe, which requires expensive cross-element
transfers and leads to a similar impact on data movement as the inter-module
communication in MSA does.

The strongest caveat one often hears as to separation of resources in MSA is the
occurence of increased latency for inter-module communication. This effect certainly
is most acute when the data have to pass network gateways, i.e., when the modules
utilize different interconnect technologies and are connected via a network bridge.
However, in case the same or a fully compatible network technology is used across
the entire MSA and gateways do not need to be involved, the inter-module
communication capabilities are indeed comparable in capability and latency to the
inter-node communication as given within an HPC module.

But even on a homogeneous network it is obvious that the latency between a CPU on
the cluster and a GPU on the booster, is slightly higher than if they were located inside
the same node, where they save the hop over the interconnect. It is for this reason that
it is not advisable to offload small kernels between modules in MSA. Therefore, as
already stated, in contrast to offloading small kernels as done on node (see in case
(i)), in MSA code-partitioning is carried out at a much coarser granularity (see case
(ii)). Moreover, on these coarse structures, one can benefit from algorithmic methods
in order to reduce data movement between the MSA modules. For example, when
running larger code parts on the different modules in parallel, communication between
the modules is required much less frequently than within the module, dramatically
reducing the impact of the inter-module latency. Finally, to accelerate small compute
kernels, MSA can resort to exactly the same strategy as one does on the monolithic
fat node system (case (i)). MSA can thus take full advantage of the standard strategy
for accelerating small computational cores, while providing a massive improvement in
speed when accelerating large compute kernels.

In conclusion, the communication and data movement strategy of MSA relies on
executing fine-grained communication within the modules, while only coarse-grained
state-exchange information is transferred between modules. This allows both the
individual application kernels within a module to be accelerated on the nodes, and the
entire application workflow between modules to be boosted via a matching set of
resources for each large section of code. In contrast, a monolithic system composed

9. Critical Analysis of the Modular Supercomputing Architecture

 239 DEEP-EST

of identical nodes each containing a diversity of compute and acceleration resources
has no means to efficiently accommodate the coarse-grained granularity of case (ii),
which leads to resource under-utilization.

9.4 Energy efficiency

Many strategies are applied today in HPC centres to optimize energy efficiency. They
comprise the use of low-power computing elements and/or accelerators, shutting-down
unused resources, holistic system monitoring, optimizing the site-infrastructure and
system cooling (e.g., through direct liquid cooling), actively re-using waste heat, etc.
All these approaches can profit from MSA in the same manner as known from any
other heterogeneous architecture. What is more, MSA operates at a coarse-grained
scale that naturally matches the sub-second timescales handled by monitoring and
cooling systems. Heterogeneous System-on-Chip (SoC) approaches – which
represent the smallest form of intra-node heterogeneity – are governed by much
smaller spatial-scales and shorter time-scales (micro- to nanoseconds). Holistic
monitoring starting out from this level would require a vertical integration of monitoring
capabilities from very deep (SoC-level) up to very high (infrastructure-level). This
ambition constitutes a complicated technological challenge and may not be feasible
due to timescales involved differing by orders of magnitude134.

On top of the general methodology to save energy as mentioned above, MSA can
increase energy efficiency by applying three additional strategies:

1.) Targeted hardware scale-out: the dimensions of the individual MSA-modules
are determined by the requirements of the user-portfolio running on the MSA
system, as well as by the energy efficiency of its components. For instance, a
cluster module, where applications in need for high single-thread performance
run, is composed of relatively power-hungry general purpose CPUs and is
therefore kept rather small. The booster, on the other hand, which runs highly-
scalable applications (or parts thereof) achieves a very high compute
performance using more energy-efficient accelerators. In MSA, only this part of
the system is scaled-out to thousands or tens-of-thousands of nodes, if needed,
in contrast to fat node systems where complex and expensive fat nodes need
to be scaled out.

2.) Tailor system to application needs: by running each part of the user code on
the kind of node that allows best performance, improved application efficiency

134 An additional aspect is the fact that, due to the electrical capacities in the hardware, neither accurate
power measurement nor adequate power and cooling management seem realistic on a time scale of
less than a millisecond.

Porting applications to a Modular Supercomputer

DEEP-EST 240

and performance is achieved. The speed-up gained by the individual
applications translates into a shorter execution time, which typically leads to
lower overall energy consumption.

3.) Maximize use of resources: MSA enables dynamic scheduling, reservation
and allocation of resources and makes them available for the job only for the
relevant time window, while the rest of the time they are free to be used by
others. This enables more efficient resource sharing, and therefore achieves a
higher utilization of the individual components, reducing idle time and
unnecessary energy waste. In contrast, on a monolithic supercomputer with fat
nodes, all resources of all utilized fat nodes are blocked during a job’s runtime.
Sharing of nodes is expected to be inefficient due to the impact of jitter effects
induced by co-utilization135 on such fat nodes.

As far as system scaling is concerned, one might argue against point (1) that in a
booster built as a GPU-accelerated system, the necessary amount of (power hungry)
host-CPUs also grows with system size. This issue is, however, readily avoided by
choosing a suitable, low-power CPU for the booster, as the CPU only needs to manage
the GPUs and not to perform relevant application computation. It is expected that the
market will offer GPU designs with integrated orchestrator CPU cores in the near
future. This would make GPUs much more independent and allow building a true GPU-
only booster.

Building “lean” booster nodes employing low-power management-CPUs (or host-less
GPUs) also addresses point (3), as it minimizes (eventually even down to zero) the
energy consumption of host CPUs, which are among the very few resources in an MSA
system that are prone to be idle, since they are less intensively used for application
computation.

Here it is worth mentioning that maximum resource utilization (3) is an important
advantage of MSA compared to monolithic systems based on highly-heterogeneous
(fat) nodes. An increased intra-node heterogeneity leads to underutilization of
resources, since for a given job either CPUs or GPUs, but very rarely different
accelerators, are simultaneously in use. The unused node-elements run idle and
continue to consume power. Given a broad portfolio of applications, this problem
cannot simply be overcome by choosing the best-suited accelerator mix for the
heterogeneous node, as this will always introduce a fixed ratio between CPUs and
accelerators. This ratio will support only a few applications optimally while others have
their sweet-spot at higher or lower ratio. MSA, on the other hand, is fully flexible and

135 F. Petrini, D. J. Kerbyson, and S. Pakin, "The Case of the Missing Supercomputer Performance:

Achieving Optimal Performance on the 8192 Processors of ASCI Q," in ACM Supercomputing, 2003.

9. Critical Analysis of the Modular Supercomputing Architecture

 241 DEEP-EST

dynamic in the assignment of resources even during program execution, which is its
most characteristic new feature of MSA.

In order to compensate these limitations of fat nodes, some chip-designers propose
the idea of so-called “dark silicon”. It leverages the concept of integrating an amount
of computational resources that deliberately would exceed the chip’s actual power
envelope, while selectively switching some resources on and off when possible. In
principle, this strategy can be equally applied to heterogeneous chip designs by
powering off unused accelerators units. However, it is questionable if steering the
power is possible at such extremely small time-scales (see case (i) in Section 9.3)
required by the tight integration of accelerators within a chip. More importantly, even if
the power for the processing elements is switched on only during operation, the
investment made for the switched-off elements is lost for this idle time. Taking into
account that during the lifetime of an HPC system, the hardware investment is about
two thirds of the total cost of ownership, the energy adjustment as just described can
only partially compensate for the underutilization. We argue that maximizing resource
utilization by MSA is a fundamentally better approach to increase energy efficiency and
reduce cost, and increases the total scientific throughput of HPC systems.

Beyond that, the central assumption behind the dark-silicon strategy is that the cost of
transistors’ silicon is negligible when compared to the power-consumption of running
them. Reaching the end of Moore’s law by now and observing the worrying situation of
the silicon industry since 2020 lets us have serious doubts on this underlying
assumption of the dark-silicon strategy.

The challenge of connecting the additional transistors should not be neglected either.

Highly integrated systems are widely used in the mobile and embedded markets,
where space and power constraints play a crucial role. Need for high energy efficiency
together with moderate prices of mass-market components have been arguments for
applying similar strategies in HPC. However, mobile and embedded markets are
completely different from the HPC market. In mobile devices, a small number of
heterogeneous elements (thin cores, fat cores, GPU, memory, flash, modem, AI,…)
are interconnected via standardized interfaces and integrated on an SoC. Until now,
HPC has not yet settled on a standard interface for the hardware elements, which limits
the possible combinations of elements, and the bandwidth demand in between the
elements is significantly higher than on the mobile devices. The main motivation for a
SoC in mobile devices is the level of integration and low production costs, rather than
bandwidth and latency as in HPC. In HPC, high bandwidth and latency requirements
lead to the use of highly sophisticated interposers. Considering the technological
challenges and the economic constraints, which these intermediate layers are subject
to, their feasibility has not really been proven to date. Therefore, the amount of dark

Porting applications to a Modular Supercomputer

DEEP-EST 242

silicon elements is limited by both the technology of the interposer and the cost of the
silicon.

9.5 System integration
For more than a decade, standard accelerators have been integrated within fat nodes
to achieve very high peak performance. The main disadvantages of this approach, i.e.,
underutilization of resources and shared network interfaces, have been discussed
extensively above. Today, its strongest advantage as to closer integration with the CPU
resources is still diminished by the lack of a technology, where CPU and accelerators
have access to shared high-bandwidth memory. Heterogeneous chips (e.g., GPUs
with integrated CPU cores and dynamical mutual assignment), which are under
development, promise access to shared high-bandwidth memories. If such chips reach
the market, they will benefit both monolithic and modular architectures that, for
example, could build a cheaper and more energy-efficient booster by getting rid of
management CPUs.

Interestingly, the MSA technology also enables the coupling of modules that are
operated by GPUs from different manufacturers, for example. In this case, it is not so
much about accelerating computations in cluster-booster mode, but rather about
equipping the overall system with various accelerator technologies. This strategy
makes it possible, on the one hand, to make the most suitable technology available to
the user in the workflow and, on the other hand, to still make the entire system
accessible to applications that have very large memory and computing requirements.
Such type of HW requirements can currently only be delivered by MSA.

From a physical system integration perspective, building, maintaining, and operating
MSA platforms are just as complex as monolithic systems: the single modules itself
are similar to monolithic systems, they just use slim nodes in contrast to fat complex
nodes. Interconnecting them is a problem that is solved by using the right system
software, as proven by JUWELS. MSA-modules can also be adapted over time to meet
new user requirements by substituting modules or adding new ones when enhanced
technology emerges. In fact, MSA also opens up opportunities to integrate presumably
disruptive technologies into HPC systems, such as neuromorphic devices or quantum
computers. They are still in very early development stages, but have already
demonstrated impressive performances for some specific applications.

The inclusion of neuromorphic or quantum modules in the MSA might facilitate their
adoption by the wider user communities. For example, it has been demonstrated that
quantum computers are extremely efficient to solve specific kinds of problems such as
high-dimensional optimization scenarios. While it is very unlikely to see a large-scale
HPC application executed fully on a quantum computer anytime soon, it seems

9. Critical Analysis of the Modular Supercomputing Architecture

 243 DEEP-EST

worthwhile to explore an application running e.g., on the cluster module of an MSA,
which offloads an optimization problem as part of its code to be solved by a quantum
module. These types of embedded optimization problems are ideal for MSA, as they
consist of a well-isolated and large part of the code, with only small amounts of data
being exchanged between the cluster and the quantum module – which is again ideal
for a quantum computing system allowing for small data rates only. This coarse-
grained quantum-hybrid strategy allows for the exploration of quantum computing
especially for applied problems from science and industry already today, in particular
when a quantum annealer like a D-Wave system is exploited.

9.6 Application scalability
Another frequently expressed misconception about MSA is the fear of hindering
application-scalability by the need to spread the code components across vastly
different module architectures until all available compute resources are occupied.
However, for the analysis of the scalability of codes on the MSA, only the booster
module should be considered. As with Amdahl’s law, the maximum problem size and
maximum scalability is always given by the highly scalable part of the code that, in
MSA, runs on the scalable booster. In addition to that, decoupling the less-scalable
code parts from the high-scaling ones and running them on the cluster improves the
overall application scalability: the high-scaling part can scale unhindered on the
booster, while the low-scaling part is speed-up through the high single-thread
performance of the cluster module.

On the other hand, a justified criticism of MSA – or rather of the current software
environment – is that it imposes a relatively high burden on application developers to
prepare their codes for execution in a multi module mode. First of all, it is emphasized
that such code-distribution is an opportunity in MSA not a general obligation. To give
an example, highly scalable applications with an intrinsic monolithic structure (e.g.,
tightly coupled differential operations on regular lattice systems) should never be
spanned across modules, but rather run entirely within the booster.

Candidate MSA codes from multiphysics and multiscale applications to be coarse-
grained assigned to modules must undergo a series of analyses and transformations:
any such application has to be analyzed as to its internal structure and potential
performance bottlenecks, code parts need to be identified and ported to the given
module architectures using a suitable programming model (e.g., CUDA or OpenACC
for GPUs), and scaling studies need to be performed with relevant and suitable use-
cases to find their best modus operandi and the appropriate number of nodes on each
module. All these steps are summarized in the best practices guide provided as
Chapter 8 of this book. Many of the adaptations to optimize application performance

Porting applications to a Modular Supercomputer

DEEP-EST 244

on specific modules (e.g., increase vectorisation, keeping data locality, proper
organisation of data structures, etc.) are necessary on any modern heterogeneous
compute platform, not only on MSA. The additional MSA-specific considerations are
those related to the implementation of a coarse-grained code partition.

The additional effort of porting codes to MSA might scare application developers. While
so far, only a few applications are enabled to run in multi-module mode, from a user
and computing centre perspective MSA is even beneficial for single-module
operations, as the different modules provide a variety of computing resources for a
diverse application portfolio of an HPC centre, even if each code runs on only one type
of node. Still, in order to improve user experience and to promote the modularization
of HPC applications, the MSA software stack is in continuous development in order to
make the MSA-specific and the more general code porting actions as comfortably as
possible: this is the goal of the EU-funded DEEP-SEA project, which started in April
2021 and will run for three years136. It will continue the software development efforts of
the DEEP project series, which already delivered an MSA-enabled runtime system
(ParaStation Modulo), as well as a scheduler and a resource manager targeting
heterogeneity at system level. Advanced features for a better support of compute and
memory heterogeneity, enhanced malleability and interoperability features, co-
scheduling aspects, and performance portability will be developed in DEEP-SEA.

9.7 Conclusion

The goals of MSA are to offer the best system configuration to a portfolio of applications
with very different profiles and requirements, to assign the best suited hardware
resources to each of them (and each of their code-parts), and to maximize system
usage and energy efficiency by enabling an efficient sharing of compute resources
overall. Most of the reservations for which MSA is often criticized and contrasted with
other alternative heterogeneous computing approaches have their roots in simple
misunderstandings about basic MSA principles.

The MSA is fundamentally different from other heterogeneous computing approaches,
and in particular from highly integrated monolithic systems, in that system-level
heterogeneity is achieved by combining a set of (rather) homogeneous computational
modules, which allows coarse-grained partitioning of application code among these
modules. Multi-module execution is foreseen mainly for applications with an intrinsic
multi-physics or multi-scale nature. The associated large code parts run within the
modules exchanging a limited amount of data between each other at relatively low
frequency. Performance is therefore not impacted by the slightly increased inter-

136 www.deep-projects.eu

9. Critical Analysis of the Modular Supercomputing Architecture

 245 DEEP-EST

module latency. Intra-node heterogeneity, on the other hand, is suitable for low-
granularity operations, such as the execution of small but computationally intensive
kernels. Here data is exchanged at a much higher rate and low latency is very crucial
to achieve performance.

Because the operational levels of both approaches to heterogeneous computing (MSA
and highly-integrated node designs) are so different, it suggests itself to combine them.
Therefore, the MSA welcomes the inclusion of heterogeneous modules, and, in fact,
current MSA systems do contain them. The combination of different modules with
diverse node configurations, some homogenous, some heterogeneous, makes MSA
extremely flexible and adaptable to any application portfolio. Further benefits include
the possibility to scale out only the most energy-efficient modules of the system,
keeping the power-hungry modules at a relatively low node count but still available for
the user codes that require them, and the ability to include modules based on disruptive
computing technologies such as quantum technologies.

9.8 Acknowledgements
The authors thank all the institutions and individuals involved in the DEEP series of
projects and, in particular, all the members of the DEEP-EST team who have
contributed to the development of the MSA architecture, its prototype hardware
implementation, and its software environment.

This work has been partially funded by the European Union’s Seventh Framework
(FP7/20017-2013) and Horizon 2020 Framework Programmes for Research and
Innovation under grant agreements 287530 (DEEP), 610476 (DEEP-ER), 754304
(DEEP-EST), and 955606 (DEEP-SEA). The present publication reflects only the
authors' views. The European Commission is not liable for any use that might be made
of the information contained therein.

