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2.1 Introduction 
The long-term goal of the neuroscience work in DEEP-EST is to provide an optimised 
setup for the integrated simulation and analysis of large-scale brain activity21. Such in 
situ analysis is essential to facilitate the interactive investigations of brain dynamics, 
where scientists can observe network activity while a simulation is running and interact 
with it to ensure that dynamics stay within relevant regimes. In DEEP-EST, our focus 
was on simulations of functional models of brain structure using the NEST simulator22 
combined with two types of in situ analysis: computation of electrical local field 
potentials using the Arbor23 and HybridLFPy packages24 on the one side, and statistical 
analysis of spike activity using the Elephant package25 on the other. 

2.2 Application structure 

2.2.1 NEST 

NEST is a simulation code for the investigation of the dynamics of brain-scale neuronal 
network models, as for example the recently published multi-area model26. NEST 
operates on the level of resolution of neurons and synapses, where neurons are brain 
cells connected to each other by synapses. 

The simulator considers brain tissue as an abstract assembly of nodes (neurons) and 
connections (synapses) or, in other words, a directed graph. The neurons in these 
simulations are point neurons, i.e. the state of a node changes according to a set of 

                                             
21 Suarez, E. et al. (2021), „Modular Supercomputing for Neuroscience“, Lecture Notes in Computer 

Science, 2019 BrainComp Conference, Cetraro, Italy Springer International Publishing, 
10.1007/978-3-030-82427-3_5 

22 http://www.nest-simulator.org/ 
23 Akar, NA (2018) arXiv:1901.07454 [q-bio.NC] 
24 Hagen E et al. (2016) Cerebral Cortex, 26(12) pp. 4461–4496.  
25 http://elephant.readthedocs.io/ 
26 Schmidt M et al. (2018) Brain Struct Funct 223: 1409.  
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ordinary differential equations (ODE), without taking into account the complete 
morphology of the cell. 

The interaction between nodes is mediated by stereotyped events in the form of 
delayed delta pulses. These so-called action potentials (or spikes) are emitted by the 
nodes (neuronal activity) and propagated along the connections. The interaction 
strength (synaptic weight) can either be static or dynamic (synaptic plasticity) and 
depends on the activity of the two neurons joined by the connection. 

NEST does not implement a specific network model but provides the user with a range 
of neuron and synapse models and efficient routines to connect them to complex 
networks with on the order of ten thousand incoming and outgoing connections for 
each neuron. Concrete network models and the corresponding simulation experiments 
are specified by model description scripts. These scripts are written either in NEST’s 
built-in simulation language SLI (based on PostScript) or using the Cython-based 
Python interface PyNEST27,28, with PyNEST being the default interface. 

A published example of a large-scale network model is the multi-area model26, which 
was relevant also in the context of the DEEP-EST project. It is the first multi-scale 
model of vision related brain areas and comprises approximately 4 million neurons and 
6000 incoming synapses per neuron, where neurons emit on average 14.6 spikes/s. 
Each individual area is represented by a modified version of the Potjans-Diesmann 
model29, a microcircuit model corresponding to a cortical network under a surface of 1 
mm2. The microcircuits representing the areas differ in neuron numbers and 
connection probabilities. The minimal synaptic transmission delay in the network is 
0.1 ms biological time, i.e., the time simulated in the biological system. This requires 
frequent MPI communication of spikes (every 0.1 ms biological time). In terms of 
wallclock time, MPI communication occurs at approximately 10–30 ms intervals, 
depending on the activity level in the neuronal network. Due to long transients in the 
network dynamics the model needs to be simulated for 100 s biological time. 

The NEST code base is open source and under continuous development in order to 
enable the investigation of novel models and theories in Computational Neuroscience 
on the one hand, and to meet the requirements of new computer hardware on the other 
hand. Since release 2.16, the NEST 5th generation simulation kernel (5G)30 is included, 
which achieves excellent scaling with respect to memory usage and good scaling with 
respect to runtime on the largest supercomputers currently available for academic 

                                             
27 Eppler, JM et al. (2008) Front. Neuroinform. 2:12.  
28 Zaytsev YV and Morrison A (2014) Front. Neuroinform. 8:23.  
29 Potjans TC and Diesmann M (2014) Cereb. Cortex 24, 785–806.  
30 Jordan J et al. (2018) Front. Neuroinform. 12:2.  
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research. The key step from the previous kernel used in NEST releases 2.6.0–2.14.0 
to the 5G kernel is a new connectivity representation and spike exchange scheme 
using directed communication based on MPI_Alltoall(). 

2.2.2 Arbor/HybridLFPy 

Arbor simulates compartmental neuron models. This means that the spatial structure 
of each neuron is represented as a spherical cell body (soma), to which an arbitrary 
number of dendritic trees are attached. Each dendritic tree consists of segments, i.e. 
tubes or cables, of a given length and radius; in the simulation, each segment is 
represented by a configurable number of compartments. Each segment is either 
connected to one other segment at each of its ends (linear cable) or to several 
segments at its far end (branching point; far end: end pointing away from the soma). 
Electric currents flow along the cables formed by the dendritic tree. This current flow is 
described by ordinary differential equations, with one set of equations for each 
compartment, coupled to neighbouring compartments. The main task of Arbor is to 
solve the resulting system of ODEs; this task is highly amenable to vectorisation. In 
addition, Arbor also transmits spikes between neurons via synapses; this mechanism 
is of lesser importance for our purposes because HybridLFPy is based on simulating 
the dynamics of disconnected compartmental neurons based on spike input generated 
by NEST. 

HybridLFPy computes mesoscopic electrical brain signals, called local field potentials 
(LFPs) based on the network dynamics simulated using NEST. Specifically, spike 
trains generated by neurons in a NEST simulation, using highly connected point 
neurons are fed into detailed models of unconnected neurons simulated using Arbor 
to compute the electrical currents passing through the cell membrane at different 
locations. From these currents, HybridLFPy then computes the LFP at different 
locations in a piece of brain tissue using electrostatic principles.  

2.2.3 Elephant (ASSET) 

Elephant is a pure Python library for the statistical analysis of spike activity of neurons. 
It can be installed using standard Python distribution tools. Elephant implements a wide 
and growing range of analysis methods. We focus mainly on the calculation of cross-
correlations between spike trains and the detection of repeated patterns of spike 
activity across groups of neurons, so-called synfire chains. 

Cross-correlations are detected using standard approaches, either implemented 
directly in Python or using NumPy convolution algorithms. Except for possible thread-
parallelisation provided by the NumPy convolution implementation, cross-correlation 
algorithms are purely serial at present. 
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Detection of synfire chains uses the ASSET algorithm31 in an optimised version32, 
replacing the non-optimised version currently included in the release version of 
Elephant. The optimised algorithm uses MPI4Py for parallelisation. 

2.3 Application mapping 

Traditionally, NEST simulations have two distinct phases: a network construction 
(build) phase and a simulation phase. The key part of the build phase is the 
construction of network connectivity, i.e., building in largely random order a hierarchical 
data structure representing connections between neurons; each connection is 
represented only on the thread managing the connection’s target neuron. 

During the simulation phase, differential equations for the individual neurons are 
updated and spikes emitted according to a threshold criterion. Information on emitted 
spikes is exchanged between MPI processes and threads in steps of the minimal 
synaptic delay in the network, which is the maximum interval permitted by causality. 
Spikes are delivered to target neurons in parallel, each virtual process being 
responsible for delivery to the set of neurons it manages. This delivery process entails 
essentially random accesses to the connectivity data structure. 

For the fifth generation (5G) kernel, we distinguish a third phase, called initialization 
phase, which comprises all necessary initialization processes at the beginning of a 
NEST simulation before the actual simulation takes place. In the NEST 5G kernel 
(NEST release 2.16), connectivity information, which is available only on the 
postsynaptic side after the build phase, needs to be transferred to the presynaptic side 
in order to enable directed communication of spikes during simulation. The transfer of 
connectivity data involves at least one round of MPI_Alltoall() communication, which 
makes the initialization phase a non-negligible component. 

In the benchmarks hpc_benchmark.sli and hpc_mam_benchmark.sli, build phase and 
initialization phase take up a significant amount of the total runtime as the neuronal 
networks are simulated only for one second of biological time. In simulations of the 
multi-area model, build phase and initialization phase require only a small fraction of 
the total runtime as the network is simulated for 100 s of biological time. 

To enable the interaction of NEST with Arbor/HybridLFPy (see Figure 2.1), a small 
fraction of the connectivity details of the multi-area network, which is available after the 
build phase of NEST, needs to be communicated, where HybridLFPy maps the 
connectivity to the detailed neuron models. 

                                             
31 Torre E et al. (2016) PLoS Comput Biol 12(7): e1004939. 
32 Canova C et al. (2017) ASSET for JULIA: executing massive parallel spike correlation analysis on a 

KNL cluster. Poster presented at HBP Summit 2017. 
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Figure 2.1: Schematic workflow of NEST and Arbor/HybridLFPY in the MSA 

During the simulation phase NEST needs to communicate spikes from a fraction of the 
neurons of the multi-area model to Arbor or Elephant. Communication takes place 
frequently and is coordinated by the MUSIC library (see Figure 2.1 and Figure 2.2). 
We estimate that the total amount of data that needs to be communicated from CM to 
ESB or DAM in each communication round is negligible (about 1 kB if we assume 
communication every 0.1 ms of simulated time). 

 
Figure 2.2: Schematic workflow of NEST and Elephant (ASSET) in the MSA 

NEST (on CM) and Arbor/HybridLFPy (on ESB) start to run at the same time. While 
NEST constructs neurons and connections, Arbor instantiates neuron models. After 
the build phase of NEST, detailed connectivity information about the multi-area 
network is available. HybridLFPy requires part of this connectivity data in order to map 
the incoming connections of selected point-neurons simulated in NEST to their 
compartmental counterparts simulated in Arbor. Based on that, Arbor can build 
connections to the neuronal compartments. 

After the communication of connectivity data from CM to ESB, NEST enters the 
initialization phase, which does not necessarily end at the same time as the Arbor build 
phase. The simulation phases of both NEST and Arbor follow, where Arbor relies on 
frequent spike input from NEST. 

During the simultaneous simulation phases of NEST and Arbor, full network activity of 
the multi-area model is simulated in NEST and spikes from the previously selected 
fraction of the network are frequently communicated to Arbor running on the ESB using 
the MPI-based MUSIC library. The spatially detailed (compartmental) neuron models 
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simulated in Arbor consume the spikes according to the mapping created by 
HybridLFPy. 

Locally on the ESB HybridLFPy requires frequent information about ionic currents into 
and out of the neuronal compartments simulated in Arbor in order to predict the LFP 
signals and their development over time. 

Elephant is fed with spikes from selected populations of the multi-area model using the 
MUSIC library to coordinate MPI communication (see Figure 2.2). Therefore, NEST 
(on CM) and the Python script that applies the necessary Elephant functions to the 
incoming spike trains (on DAM) start to run at the same time but the Python script 
needs to wait with the analysis until NEST reaches the simulation phase and produces 
spikes. 

We expect that in simulations of the multi-area model this initial idle time of Elephant 
will be irrelevant as neither build nor initialization time, but the actual simulation time, 
dominates the total runtime of NEST. 

The simulation of the multi-area model with NEST is run on the CM using a hybrid 
parallelisation scheme combining MPI and OpenMP threads. CM is optimal for NEST, 
because NEST's irregular memory access patterns perform optimally on CPUs with 
large, low-latency RAM and because NEST does not benefit from vectorisation.  

Selected neurons of the multi-area network are simulated in greater detail with Arbor 
running on the ESB, because Arbor requires considerably more compute power 
relative to memory, since Arbor simulation does not require full network connectivity 
information. Arbor benefits significantly from vectorisation using AVX2, AVX512, and 
GPGPUs; it uses hybrid parallelisation combining MPI and C++11 threads or Intel TBB.  

Analysis of spike trains recorded from selected populations of the multi-area model is 
carried out by Elephant, which runs on the DAM. 

2.4 Porting experience 
Porting the code to the different DEEP-EST modules has been straightforward for all 
three applications (NEST to the CM, Arbor to the ESB, and Elephant to the DAM).
There were, in particular, no issues with porting Arbor to the ESB as GPU support was 
already in place.  

To use the workflows described above, we needed to implement communication back 
ends in Arbor and NEST. We had suggested earlier to use the MUSIC library for the 
communication within the NEST-Arbor coupling. More careful analysis of the 
interaction between NEST and MUSIC as part of this project revealed that use of 
MUSIC for MPI communication between NEST and Arbor would impose frequent 
synchronisation of threads in MPI-OpenMP hybrid NEST simulations. To avoid this, we 
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decided to implement NEST-Arbor coupling directly via MPI instead of using MUSIC 
as an intermediary. The mapping of neuron identities between NEST and Arbor, which 
MUSIC would have provided, was ensured through proper simulator scripting. 

NEST, Arbor and Elephant could be installed and run out-of-the box using standard 
compiler and build tools available after we had familiarized ourselves with the software 
environment on the DEEP-EST system, with an effort off less than 0.5 Person Month 
(PM). Basic interfacing NEST and Elephant via MUSIC including minor bug fixes took 
also about 0.5 PM. The NEST-Arbor interface was implemented in collaboration with 
the Arbor development team; NMBU contributed roughly half of the effort (3 PM). 

2.5 Scalability 
Both NEST and Arbor have already been shown to scale well on modern 
supercomputers33,34 (Figure 2.3 and Figure 2.4). With the 5th generation simulation 
kernel, the communication scheme for the exchange of spikes between MPI processes 
was changed from Allgather() to Alltoall(), allowing each MPI process to send 
spikes only to the MPI processes that host the targets. To this end, the connection 
infrastructure of NEST was redesigned. Arbor has been developed considering support 
for GPUs and explicit vectorization from the very outset. 

 

 
Figure 2.3: Simulation time for NEST running the HPC benchmark33 on JUQUEEN; shown for 

previous kernel (4g) and new kernel with optimizations for small-scale to medium-scale regime 
(5g-sort) and without the optimizations (5g-nosort). Adapted from Figure 7C in33) 

 

                                             
33 Jordan, J. et al. (2018) doi:10.3389/fninf.2018.00002 
34 Akar, N. A. et al (2019) doi: 10.1109/EMPDP.2019.8671560 
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Figure 2.4: Performance of Arbor (based on 34): Single node wall time of Arbor running on Piz 

Daint multicore, GPU and Tave KNL 

The new NEST kernel shows good weak-scaling behaviour on modern 
supercomputers (5g-nosort, Figure 2.3, adapted from Figure 7C in Jordan et al. 
201833). We go from 32 MPI processes to about 32,000 MPI process, while increasing 
the problem size therefore in weak scaling by a factor of 1000, and keep the runtime 
nearly constant. For large numbers of MPI processes, the 5g kernel shows much better 
scaling behaviour and a decrease in runtime by more than 55% for simulations on the 
full JUQUEEN35 system compared to the previous kernel (4g). The S-shaped trend of 
the simulation time observed for the new NEST kernel (5g-sort) can be explained as 
follows: For a smaller number of MPI processes, an additional reduction in memory 
usage is achieved by optimizations for the small-scale to medium-scale regime 
(compare 5g-sort: small-scale optimizations enabled to 5g-nosort: small-scale 
optimizations disabled). The optimizations exploit the lesser degree of distribution of 
each neuron’s outgoing connections across processes in the regime up to few 
thousands of MPI processes,33). As gradually the optimizations get less effective with 
increasing numbers of MPI processes, due to an increasing degree of distribution of 
connections across processes, simulation times also increase. Note that this effect on 
scalability in the small-scale to medium-scale regime can be observed in all scaling 
measurements for NEST shown in this deliverable as in all cases the optimizations 

                                             
35 M. Stephan, J. Docter, JUQUEEN: IBM Blue Gene/Q Supercomputer System at Jülich 

Supercomputing Centre, Journal of large-scale research facilities, 1, A1 (2015) 
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were enabled (5g-sort). In the large-scale regime the outgoing connections of each 
neuron are fully distributed such that the optimizations for the small-scale to medium-
scale regime no longer play a role. The simulation time increases slowly in this large-
scale regime. 

Arbor’s single node performance has been analysed using a randomly connected 
network benchmark employing CSCS’ Piz Daint multicore, GPU and KNL clusters. For 
more than 4000 cells the GPU is utilized enough to run the benchmark more efficiently 
in terms of the wall time than on multicore or KNL (Figure 2.4; based on Akar et al. 
201834), Table 3 and Fig 4).  

 

 
Figure 2.5: Time-to-solution for NEST running the HPC benchmark on the CM: Simulation time 

and contribution of MPI communication 

 

Within this document we show some results obtained on the DEEP-EST system. 
Figure 2.5 shows a weak scaling of the HPC benchmark using NEST on the Cluster 
Module (CM) (1 MPI process per node and 24 threads per MPI process). Figure 2.6 
shows the corresponding parallel efficiency. The benchmark network model includes 
plastic synapses, which need to be updated whenever they transmit a neuronal signal 
thereby causing workload in addition to neuronal updates. The minimum simulation 
time (among at least 5 repetitions) and the time spent communicating spikes across 
MPI processes vs. number of compute nodes is shown for a test case with 1000 and 
5000 neurons per thread and 11,250 synapses per neuron36.  

                                             
36 Benchmarks simulated with NEST@da46542 (with timers and optimization for small-scale regime)” 

for 1000 and 5000 neurons per thread 
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Figure 2.6: Parallel efficiency for NEST running the HPC benchmark on the CM  

 

Figure 2.7 shows the mean simulation time for the 5000 neurons case but with 
subtracted communication time, which allows for a comparison with measurements 
obtained using the NEST dry-run mode. A dry-run simulation is carried out by one MPI 
process emulating the input from other MPI processes, which enables predictions for 
large-scale simulations. For all simulation time plots lower is better. As NEST 
optimizations for the small-scale and medium-scale regime were enabled, we observe 
the typical increase in simulation time described above (c.f. 5g-sort, Figure 2.3), for 
node counts of 64 and above. 

 
Figure 2.7: Simulation time for NEST running the HPC benchmark on the CM: Dry-run 

prediction (excluding communication time)  
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Figure 2.8: Simulation time for NEST running the MAM benchmark on the CM  

 

Figure 2.8 shows a strong scaling of the multi-area model (MAM) benchmark using 
NEST on the CM (1 MPI process per node and 24 threads per MPI process). Figure 
2.9 shows the corresponding parallel efficiency. We have developed the MAM 
benchmark in this project to provide a scalable benchmark network model with easily 
controllable parameters and stable dynamics that captures the main performance-
relevant features of the multi-area model37 such as short synaptic transmission delays 
requiring frequent communication. The benchmark network model consists of 4 million 
neurons and 5,625 synapses per neuron, where all synapses are static (no additional 
workload due to synaptic plasticity). The simulations scale well between 8 and 16 MPI 
processes, but communication time dominates the simulation time at 32 MPI 
processes. This is due to more frequent communication and less workload compared 
to the NEST HPC benchmark. The effect of the NEST optimizations for the small-scale 
and medium-scale regime also plays a role but cannot be distinguished from the other 
factors. 

 

 

 

                                             
37 Schmidt, M. et al (2018) doi. org/10.1371/journal.pcbi.1006359   
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Figure 2.9: Parallel efficiency for NEST running the MAM benchmark on the CM  

 

 

 
Figure 2.10: Weak scaling time-to-solution for the combined NEST and Arbor simulations  
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Figure 2.11: Weak scaling parallel efficiency for the Nest - Arbor coupling  

Figure 2.10 and Figure 2.11 show the weak scaling behaviour of combined NEST-
Arbor simulations38. In the smallest case (1 node), NEST simulates 120,000 point 
neurons while Arbor simulates 1% of this number, i.e., 1,200 compartmental neuron, 
each on a single compute node. The neuron numbers are scaled linearly with the 
number of compute nodes. We consider two different configurations: NEST running on 
the CM and Arbor on the ESB (grey) and NEST and Arbor both running on the CM 
(green). On the ESB, Arbor uses the GPU on each node, while on the CM Arbor runs 
24 threads per node using AVX512. For comparison, we also show the simulation 
times for the NEST part only (dotted green) and the Arbor part only (dotted blue). Note 
that for ESB-only and CM-only cases experiments were limited to 16 nodes for each 
of the programs due to the limited number of nodes.  

The underlying Arbor simulations scale perfectly on the ESB when run alone (dotted 
blue), while the simulation time for pure NEST simulations on the CM (dotted green) 
scales reasonably well. The combined NEST-Arbor simulation run on CM and ESB 
(grey) requires essentially the same time as the NEST simulation alone, indicating that 
the MSA allows us to extend the NEST simulation to a co-simulation without runtime 
penalty. Executing NEST and Arbor on the CM only leads to increased runtimes 
(green), indicating the benefit of combining CM and ESB. We also find that co-
simulation on CM and ESB reduces energy consumption, see Figure 2.15.  

                                             
38 NEST@abc4e0b78 
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Figure 2.12: Weak scaling of NEST simulation on CM feeding Elephant weak/ensemble-scaling: 

HPC Benchmark using NEST on CM and analyses with Elephant running on DAM  

 

 
Figure 2.13: Parallel efficiency for the weak scaling NEST + Elephant run  

Figure 2.12 shows an example of a NEST simulation running on the CM and sending 
data for analysis in Elephant on the DAM via MUSIC39. Figure 2.13 shows the parallel 
efficiency. Simulation time and parallel efficiency are shown as function of number of 
CM nodes used and network size scales linearly with the number of nodes, with 24 
MPI processes running on each node (to accommodate MUSICs proper support for 

                                             
39 NEST@7616f3eb with bugfix; Elephant v 0.1.0 under Python 3.6.8; MUSIC@8c6b77a57 with path for 

ParaStationMPI. 
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threading; approximately 940 neurons per process). The analysis is performed on a 
single DAM node running two Python processes: one performing ASSET analysis 
exploiting the GPU and the other performing cross-correlation analysis. Comparison of 
simulation without spike transfer to the DAM (orange) and simulation with analysis on 
the DAM (purple) shows that the overhead for analysis is small (approximately 10%) 
and that, while not perfect, simulation time is roughly in agreement with a weak scaling 
regime. 

2.5.1 Our path to Exascale 

Above we discussed to what extent the applications can scale at the moment. The 
following subsections will outline our path to Exascale 

2.5.1.1 What are the limitations – Can they be fixed? 

The most visible performance limitation in our work is the relatively poor weak-scaling 
performance of NEST on the CM for large numbers of neurons as shown in Figure 2.5, 
which also affects the run time of co-simulations running NEST on the CM and Arbor 
on the ESB as shown in Figure 2.10. In part, this weak scaling is a consequence of the 
optimisations for small to medium scale simulations of the NEST 5g kernel, which 
exploit the lesser degree of distribution of each neuron’s outgoing connections across 
MPI processes in this regime. As the number of processes increases the exploitation 
potential decreases rendering the optimisations less and less effective. The 
optimisations reduce the total simulation times in this regime but due to the gradual 
decrease in effectiveness distort the observed scaling behaviour on smaller systems 
such as the existing CM; scaling behaviour of large-scale simulations is not affected 
by this. Further optimisation will focus on simulation on Exascale systems with an aim 
at reducing overall communication requirements by introducing support for local 
connectivity: in real neuronal circuits, a large fraction of the connections are local, but 
this locality is not yet exploited in NEST or Arbor to minimize communication. 

2.5.1.2 How to use future Exascale systems 

Exascale computers will be required to allow full-scale simulations of models of primate 
brains at the resolution of individual neurons. Only Exascale systems will provide the 
memory necessary to represent the connectivity in networks at the scale of entire 
brains, the computing power needed to advance the dynamics of neurons, and the 
interconnects to facilitate signal exchange between neurons. Using a network with 
highly simplified structure, we demonstrated the feasibility of simulating networks on 
the size of a cat brain on a major Petascale computer (K, JUQUEEN40). Since then, 

                                             
40 Kunkel, S. et al. (2014) doi: 10.3389/fninf.2014.00078 
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we have made important steps in resource efficient dry-run benchmarking41,42 and 
directed communication33. Dedicated efforts as part of the DEEP-EST project have 
reduced spike-delivery times43, addressing a key performance bottleneck. Parallel 
activities in the EC ICT Flagship Human Brain Project44 focused on reducing the times 
required to construct networks with realistic complexity in parallel and to further 
optimise communication schemes for Exascale systems. This work will be pursued in 
collaboration with Japanese colleagues, which will allow actual experiments on the 
largest available pre-Exascale system, Fugaku, later in 2021. 

2.5.1.3 Where did the DEEP-EST project help on the way to Exascale? 

Comprehensive performance profiling allowed us to identify crucial performance 
bottlenecks in spiking network simulations. Network models with realistic degree 
(in/out-degree of O(104) per neuron) and complexity characteristic of brain networks 
are represented in the simulator as large adjacency lists which are traversed in random 
order due to the stochastic activity in network models. This leads to unpredictable 
memory access patterns and thus inefficient caching. As part of our activities in the 
DEEP-EST project, we were able to develop new spike-delivery techniques improving 
caching performance and thus overall simulation performance43. The success of the 
new spike-delivery algorithm was rather unexpected as the memory bottleneck 
imposed by local spike routing has long been considered insuperable in neuronal 
network simulation technology. The techniques are not specific to the NEST simulator 
for which we have developed them, but are applicable to other simulators for pulse-
coupled networks with high connection degrees as well. We consider this a generally 
useful contribution to large-scale network simulation. 

Beyond this surprising success and the resulting benefit for the NEST users, our work 
contributes indirectly to the development of neuromorphic systems. The technology for 
simulations of spiking neuronal networks on conventional computer architectures 
informs and inspires the design of neuromorphic systems, and it constitutes an 
important reference benchmark for such systems regarding accuracy, energy 
consumption and speed. Mitigating the von Neumann bottleneck in spiking network 
simulations on conventional architectures by latency-hiding techniques challenges 
neuromorphic systems. The effective use of such techniques indicates that the 
memory bottleneck can likely be overcome by many-core systems as naturally each 
core needs to oversee a decreasing amount of memory. 

                                             
41 Kunkel, S., and Scheck, W. (2017) doi: 10.3389/fninf.2017.00040  
42 Kunkel, S., and Scheck, W. In preparation. 
43 Pronold, J. et al. In preparation. 
44 https://www.humanbrainproject.eu, Specific Grant Agreements 2 (2018–2020) and 3 (2020–2023). 
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2.6 Energy consumption 

 
Figure 2.14: Total energy consumption for NEST running the HPC benchmark on CM for two 

different network sizes  

 

Figure 2.14 shows the total energy consumption from the benchmark runs shown in 
Figure 2.5 and Figure 2.15 shows the total energy consumption for the NEST-Arbor 
co-simulations shown in Figure 2.10. While timings shown in Figure 2.5 and Figure 
2.10 show the actual simulation time (propagation of network state), the total energy 
consumption includes the time required for network construction and initialization 
before the simulation. 

For the pure NEST simulation on the CM we observe linear scaling as expected up to 
32 nodes followed by a noticeably superlinear increase when simulating on 45 nodes. 
For the co-simulation, scaling is nearly perfectly linear when combining up to 32 nodes 
each on CM and ESB. Co-simulations on the CM alone were only performed up to 
16+16 nodes, the limit set by the DEEP-EST system size at present, with higher energy 
consumption when using only the CM, especially for 16+16 nodes case. This indicates 
energy efficiency gains from the modular system architecture. 
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Figure 2.15: Total energy consumption for NEST and Arbor co-simulation running on CM and 
ESB (grey) and on the CM alone (green). The number of nodes is per simulator, i.e., 16 nodes 

means NEST running on 16 nodes (always CM) and Arbor running on 16 different nodes (either 
ESB or CM)  

 

2.7 Performance comparison 
After over three years of development, this subsection compares our current 
application status with their status at the start of the DEEP-EST project. 

2.7.1 New spike-delivery algorithm 

 
Figure 2.16: Simulation time reduction for new spike-delivery algorithms  
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Figure 2.17: Optimisation factor gained by the new spike delivery  

 

Sparse connectivity combined with irregular spiking activity leads to a practically 
random memory-access pattern during spike delivery. Seemingly this is a worst-case 
situation for the von Neumann architecture, where for any computation the content of 
a respective memory unit needs to be transported to the central processing unit and 
the result needs to be transported back. In weak-scaling spike delivery dominates the 
simulation time33. To overcome the memory bottleneck, we have rearranged the 
elementary algorithmic steps required to deliver the incoming, essentially random spike 
data to the process-local targets, such that they can be more efficiently processed by 
conventional computer hardware. The redesign also includes common latency-hiding 
techniques such as software prefetching and software pipelining. Figure 2.16 shows a 
significant reduction in simulation time as a result of new algorithms for spike-delivery 
in NEST, when comparing the HPC benchmark (2 MPI process per node with 12 
threads per process and 1000 or 5000 neurons per thread) and the same case with 
the new spike-delivery enabled45. Figure 2.17 shows the optimisation factor gained by 
employing the new spike delivery. Note that in this version of the HPC benchmark all 
synapses were static (no additional workload due to synaptic plasticity), which allowed 
us to better expose the memory bottleneck. 

 

                                             
45 Optimized spike delivery: HPC-Benchmark simulated with NEST@8f1b08c (with timers and 

optimization for small-scale regime); reference data simulated with NEST@8897668. 
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2.8 Conclusion 
Running brain-model simulations on Exascale computers to explore brain dynamics at 
the scale of full brains is a major challenge in computational neuroscience and in 
simulation technology. The focus put in the DEEP-EST project on improving 
application scaling and performance has allowed us to test new techniques and to 
understand factors affecting performance of simulators, especially NEST, even better. 
This has driven the development of more efficient spike-delivery techniques and the 
development of an advanced dry-run mode. The latter allows benchmarking of large 
parallel simulations on a small subset of the relevant system and presents an approach 
also viable for other, comparable tools. 

In situ processing of spike data generated by large-scale brain simulations will be 
essential as networks are scaled up, since storing a raw spike during simulation and 
re-loading it for analysis becomes infeasible. Coupling NEST-Arbor and NEST-
Elephant enables combining on the one hand simulations at different levels of 
description and on the other hand simulations and analysis. Our work in the DEEP-
EST project in this area has shown that a hybrid approach of distributing different parts 
of a workflow across different modules of a MSA clearly holds potential. 

 

 




