
2. Neuroscience with NEST, Arbor and Elephant

 27 DEEP-EST

2 Neuroscience with NEST, Arbor and Elephant
Hans Ekkehard Plesser, Susanne Kunkel, Håkon Mørk

Norges miljø- og biovitenskapelige universitet, NMBU, Norway

hans.ekkehard.plesser@nmbu.no

2.1 Introduction
The long-term goal of the neuroscience work in DEEP-EST is to provide an optimised
setup for the integrated simulation and analysis of large-scale brain activity21. Such in
situ analysis is essential to facilitate the interactive investigations of brain dynamics,
where scientists can observe network activity while a simulation is running and interact
with it to ensure that dynamics stay within relevant regimes. In DEEP-EST, our focus
was on simulations of functional models of brain structure using the NEST simulator22
combined with two types of in situ analysis: computation of electrical local field
potentials using the Arbor23 and HybridLFPy packages24 on the one side, and statistical
analysis of spike activity using the Elephant package25 on the other.

2.2 Application structure

2.2.1 NEST

NEST is a simulation code for the investigation of the dynamics of brain-scale neuronal
network models, as for example the recently published multi-area model26. NEST
operates on the level of resolution of neurons and synapses, where neurons are brain
cells connected to each other by synapses.

The simulator considers brain tissue as an abstract assembly of nodes (neurons) and
connections (synapses) or, in other words, a directed graph. The neurons in these
simulations are point neurons, i.e. the state of a node changes according to a set of

21 Suarez, E. et al. (2021), „Modular Supercomputing for Neuroscience“, Lecture Notes in Computer

Science, 2019 BrainComp Conference, Cetraro, Italy Springer International Publishing,
10.1007/978-3-030-82427-3_5

22 http://www.nest-simulator.org/
23 Akar, NA (2018) arXiv:1901.07454 [q-bio.NC]
24 Hagen E et al. (2016) Cerebral Cortex, 26(12) pp. 4461–4496.
25 http://elephant.readthedocs.io/
26 Schmidt M et al. (2018) Brain Struct Funct 223: 1409.

Porting applications to a Modular Supercomputer

DEEP-EST 28

ordinary differential equations (ODE), without taking into account the complete
morphology of the cell.

The interaction between nodes is mediated by stereotyped events in the form of
delayed delta pulses. These so-called action potentials (or spikes) are emitted by the
nodes (neuronal activity) and propagated along the connections. The interaction
strength (synaptic weight) can either be static or dynamic (synaptic plasticity) and
depends on the activity of the two neurons joined by the connection.

NEST does not implement a specific network model but provides the user with a range
of neuron and synapse models and efficient routines to connect them to complex
networks with on the order of ten thousand incoming and outgoing connections for
each neuron. Concrete network models and the corresponding simulation experiments
are specified by model description scripts. These scripts are written either in NEST’s
built-in simulation language SLI (based on PostScript) or using the Cython-based
Python interface PyNEST27,28, with PyNEST being the default interface.

A published example of a large-scale network model is the multi-area model26, which
was relevant also in the context of the DEEP-EST project. It is the first multi-scale
model of vision related brain areas and comprises approximately 4 million neurons and
6000 incoming synapses per neuron, where neurons emit on average 14.6 spikes/s.
Each individual area is represented by a modified version of the Potjans-Diesmann
model29, a microcircuit model corresponding to a cortical network under a surface of 1
mm2. The microcircuits representing the areas differ in neuron numbers and
connection probabilities. The minimal synaptic transmission delay in the network is
0.1 ms biological time, i.e., the time simulated in the biological system. This requires
frequent MPI communication of spikes (every 0.1 ms biological time). In terms of
wallclock time, MPI communication occurs at approximately 10–30 ms intervals,
depending on the activity level in the neuronal network. Due to long transients in the
network dynamics the model needs to be simulated for 100 s biological time.

The NEST code base is open source and under continuous development in order to
enable the investigation of novel models and theories in Computational Neuroscience
on the one hand, and to meet the requirements of new computer hardware on the other
hand. Since release 2.16, the NEST 5th generation simulation kernel (5G)30 is included,
which achieves excellent scaling with respect to memory usage and good scaling with
respect to runtime on the largest supercomputers currently available for academic

27 Eppler, JM et al. (2008) Front. Neuroinform. 2:12.
28 Zaytsev YV and Morrison A (2014) Front. Neuroinform. 8:23.
29 Potjans TC and Diesmann M (2014) Cereb. Cortex 24, 785–806.
30 Jordan J et al. (2018) Front. Neuroinform. 12:2.

2. Neuroscience with NEST, Arbor and Elephant

 29 DEEP-EST

research. The key step from the previous kernel used in NEST releases 2.6.0–2.14.0
to the 5G kernel is a new connectivity representation and spike exchange scheme
using directed communication based on MPI_Alltoall().

2.2.2 Arbor/HybridLFPy

Arbor simulates compartmental neuron models. This means that the spatial structure
of each neuron is represented as a spherical cell body (soma), to which an arbitrary
number of dendritic trees are attached. Each dendritic tree consists of segments, i.e.
tubes or cables, of a given length and radius; in the simulation, each segment is
represented by a configurable number of compartments. Each segment is either
connected to one other segment at each of its ends (linear cable) or to several
segments at its far end (branching point; far end: end pointing away from the soma).
Electric currents flow along the cables formed by the dendritic tree. This current flow is
described by ordinary differential equations, with one set of equations for each
compartment, coupled to neighbouring compartments. The main task of Arbor is to
solve the resulting system of ODEs; this task is highly amenable to vectorisation. In
addition, Arbor also transmits spikes between neurons via synapses; this mechanism
is of lesser importance for our purposes because HybridLFPy is based on simulating
the dynamics of disconnected compartmental neurons based on spike input generated
by NEST.

HybridLFPy computes mesoscopic electrical brain signals, called local field potentials
(LFPs) based on the network dynamics simulated using NEST. Specifically, spike
trains generated by neurons in a NEST simulation, using highly connected point
neurons are fed into detailed models of unconnected neurons simulated using Arbor
to compute the electrical currents passing through the cell membrane at different
locations. From these currents, HybridLFPy then computes the LFP at different
locations in a piece of brain tissue using electrostatic principles.

2.2.3 Elephant (ASSET)

Elephant is a pure Python library for the statistical analysis of spike activity of neurons.
It can be installed using standard Python distribution tools. Elephant implements a wide
and growing range of analysis methods. We focus mainly on the calculation of cross-
correlations between spike trains and the detection of repeated patterns of spike
activity across groups of neurons, so-called synfire chains.

Cross-correlations are detected using standard approaches, either implemented
directly in Python or using NumPy convolution algorithms. Except for possible thread-
parallelisation provided by the NumPy convolution implementation, cross-correlation
algorithms are purely serial at present.

Porting applications to a Modular Supercomputer

DEEP-EST 30

Detection of synfire chains uses the ASSET algorithm31 in an optimised version32,
replacing the non-optimised version currently included in the release version of
Elephant. The optimised algorithm uses MPI4Py for parallelisation.

2.3 Application mapping

Traditionally, NEST simulations have two distinct phases: a network construction
(build) phase and a simulation phase. The key part of the build phase is the
construction of network connectivity, i.e., building in largely random order a hierarchical
data structure representing connections between neurons; each connection is
represented only on the thread managing the connection’s target neuron.

During the simulation phase, differential equations for the individual neurons are
updated and spikes emitted according to a threshold criterion. Information on emitted
spikes is exchanged between MPI processes and threads in steps of the minimal
synaptic delay in the network, which is the maximum interval permitted by causality.
Spikes are delivered to target neurons in parallel, each virtual process being
responsible for delivery to the set of neurons it manages. This delivery process entails
essentially random accesses to the connectivity data structure.

For the fifth generation (5G) kernel, we distinguish a third phase, called initialization
phase, which comprises all necessary initialization processes at the beginning of a
NEST simulation before the actual simulation takes place. In the NEST 5G kernel
(NEST release 2.16), connectivity information, which is available only on the
postsynaptic side after the build phase, needs to be transferred to the presynaptic side
in order to enable directed communication of spikes during simulation. The transfer of
connectivity data involves at least one round of MPI_Alltoall() communication, which
makes the initialization phase a non-negligible component.

In the benchmarks hpc_benchmark.sli and hpc_mam_benchmark.sli, build phase and
initialization phase take up a significant amount of the total runtime as the neuronal
networks are simulated only for one second of biological time. In simulations of the
multi-area model, build phase and initialization phase require only a small fraction of
the total runtime as the network is simulated for 100 s of biological time.

To enable the interaction of NEST with Arbor/HybridLFPy (see Figure 2.1), a small
fraction of the connectivity details of the multi-area network, which is available after the
build phase of NEST, needs to be communicated, where HybridLFPy maps the
connectivity to the detailed neuron models.

31 Torre E et al. (2016) PLoS Comput Biol 12(7): e1004939.
32 Canova C et al. (2017) ASSET for JULIA: executing massive parallel spike correlation analysis on a

KNL cluster. Poster presented at HBP Summit 2017.

2. Neuroscience with NEST, Arbor and Elephant

 31 DEEP-EST

Figure 2.1: Schematic workflow of NEST and Arbor/HybridLFPY in the MSA

During the simulation phase NEST needs to communicate spikes from a fraction of the
neurons of the multi-area model to Arbor or Elephant. Communication takes place
frequently and is coordinated by the MUSIC library (see Figure 2.1 and Figure 2.2).
We estimate that the total amount of data that needs to be communicated from CM to
ESB or DAM in each communication round is negligible (about 1 kB if we assume
communication every 0.1 ms of simulated time).

Figure 2.2: Schematic workflow of NEST and Elephant (ASSET) in the MSA

NEST (on CM) and Arbor/HybridLFPy (on ESB) start to run at the same time. While
NEST constructs neurons and connections, Arbor instantiates neuron models. After
the build phase of NEST, detailed connectivity information about the multi-area
network is available. HybridLFPy requires part of this connectivity data in order to map
the incoming connections of selected point-neurons simulated in NEST to their
compartmental counterparts simulated in Arbor. Based on that, Arbor can build
connections to the neuronal compartments.

After the communication of connectivity data from CM to ESB, NEST enters the
initialization phase, which does not necessarily end at the same time as the Arbor build
phase. The simulation phases of both NEST and Arbor follow, where Arbor relies on
frequent spike input from NEST.

During the simultaneous simulation phases of NEST and Arbor, full network activity of
the multi-area model is simulated in NEST and spikes from the previously selected
fraction of the network are frequently communicated to Arbor running on the ESB using
the MPI-based MUSIC library. The spatially detailed (compartmental) neuron models

Porting applications to a Modular Supercomputer

DEEP-EST 32

simulated in Arbor consume the spikes according to the mapping created by
HybridLFPy.

Locally on the ESB HybridLFPy requires frequent information about ionic currents into
and out of the neuronal compartments simulated in Arbor in order to predict the LFP
signals and their development over time.

Elephant is fed with spikes from selected populations of the multi-area model using the
MUSIC library to coordinate MPI communication (see Figure 2.2). Therefore, NEST
(on CM) and the Python script that applies the necessary Elephant functions to the
incoming spike trains (on DAM) start to run at the same time but the Python script
needs to wait with the analysis until NEST reaches the simulation phase and produces
spikes.

We expect that in simulations of the multi-area model this initial idle time of Elephant
will be irrelevant as neither build nor initialization time, but the actual simulation time,
dominates the total runtime of NEST.

The simulation of the multi-area model with NEST is run on the CM using a hybrid
parallelisation scheme combining MPI and OpenMP threads. CM is optimal for NEST,
because NEST's irregular memory access patterns perform optimally on CPUs with
large, low-latency RAM and because NEST does not benefit from vectorisation.

Selected neurons of the multi-area network are simulated in greater detail with Arbor
running on the ESB, because Arbor requires considerably more compute power
relative to memory, since Arbor simulation does not require full network connectivity
information. Arbor benefits significantly from vectorisation using AVX2, AVX512, and
GPGPUs; it uses hybrid parallelisation combining MPI and C++11 threads or Intel TBB.

Analysis of spike trains recorded from selected populations of the multi-area model is
carried out by Elephant, which runs on the DAM.

2.4 Porting experience
Porting the code to the different DEEP-EST modules has been straightforward for all
three applications (NEST to the CM, Arbor to the ESB, and Elephant to the DAM).
There were, in particular, no issues with porting Arbor to the ESB as GPU support was
already in place.

To use the workflows described above, we needed to implement communication back
ends in Arbor and NEST. We had suggested earlier to use the MUSIC library for the
communication within the NEST-Arbor coupling. More careful analysis of the
interaction between NEST and MUSIC as part of this project revealed that use of
MUSIC for MPI communication between NEST and Arbor would impose frequent
synchronisation of threads in MPI-OpenMP hybrid NEST simulations. To avoid this, we

2. Neuroscience with NEST, Arbor and Elephant

 33 DEEP-EST

decided to implement NEST-Arbor coupling directly via MPI instead of using MUSIC
as an intermediary. The mapping of neuron identities between NEST and Arbor, which
MUSIC would have provided, was ensured through proper simulator scripting.

NEST, Arbor and Elephant could be installed and run out-of-the box using standard
compiler and build tools available after we had familiarized ourselves with the software
environment on the DEEP-EST system, with an effort off less than 0.5 Person Month
(PM). Basic interfacing NEST and Elephant via MUSIC including minor bug fixes took
also about 0.5 PM. The NEST-Arbor interface was implemented in collaboration with
the Arbor development team; NMBU contributed roughly half of the effort (3 PM).

2.5 Scalability
Both NEST and Arbor have already been shown to scale well on modern
supercomputers33,34 (Figure 2.3 and Figure 2.4). With the 5th generation simulation
kernel, the communication scheme for the exchange of spikes between MPI processes
was changed from Allgather() to Alltoall(), allowing each MPI process to send
spikes only to the MPI processes that host the targets. To this end, the connection
infrastructure of NEST was redesigned. Arbor has been developed considering support
for GPUs and explicit vectorization from the very outset.

Figure 2.3: Simulation time for NEST running the HPC benchmark33 on JUQUEEN; shown for

previous kernel (4g) and new kernel with optimizations for small-scale to medium-scale regime
(5g-sort) and without the optimizations (5g-nosort). Adapted from Figure 7C in33)

33 Jordan, J. et al. (2018) doi:10.3389/fninf.2018.00002
34 Akar, N. A. et al (2019) doi: 10.1109/EMPDP.2019.8671560

Porting applications to a Modular Supercomputer

DEEP-EST 34

Figure 2.4: Performance of Arbor (based on 34): Single node wall time of Arbor running on Piz

Daint multicore, GPU and Tave KNL

The new NEST kernel shows good weak-scaling behaviour on modern
supercomputers (5g-nosort, Figure 2.3, adapted from Figure 7C in Jordan et al.
201833). We go from 32 MPI processes to about 32,000 MPI process, while increasing
the problem size therefore in weak scaling by a factor of 1000, and keep the runtime
nearly constant. For large numbers of MPI processes, the 5g kernel shows much better
scaling behaviour and a decrease in runtime by more than 55% for simulations on the
full JUQUEEN35 system compared to the previous kernel (4g). The S-shaped trend of
the simulation time observed for the new NEST kernel (5g-sort) can be explained as
follows: For a smaller number of MPI processes, an additional reduction in memory
usage is achieved by optimizations for the small-scale to medium-scale regime
(compare 5g-sort: small-scale optimizations enabled to 5g-nosort: small-scale
optimizations disabled). The optimizations exploit the lesser degree of distribution of
each neuron’s outgoing connections across processes in the regime up to few
thousands of MPI processes,33). As gradually the optimizations get less effective with
increasing numbers of MPI processes, due to an increasing degree of distribution of
connections across processes, simulation times also increase. Note that this effect on
scalability in the small-scale to medium-scale regime can be observed in all scaling
measurements for NEST shown in this deliverable as in all cases the optimizations

35 M. Stephan, J. Docter, JUQUEEN: IBM Blue Gene/Q Supercomputer System at Jülich

Supercomputing Centre, Journal of large-scale research facilities, 1, A1 (2015)

2. Neuroscience with NEST, Arbor and Elephant

 35 DEEP-EST

were enabled (5g-sort). In the large-scale regime the outgoing connections of each
neuron are fully distributed such that the optimizations for the small-scale to medium-
scale regime no longer play a role. The simulation time increases slowly in this large-
scale regime.

Arbor’s single node performance has been analysed using a randomly connected
network benchmark employing CSCS’ Piz Daint multicore, GPU and KNL clusters. For
more than 4000 cells the GPU is utilized enough to run the benchmark more efficiently
in terms of the wall time than on multicore or KNL (Figure 2.4; based on Akar et al.
201834), Table 3 and Fig 4).

Figure 2.5: Time-to-solution for NEST running the HPC benchmark on the CM: Simulation time

and contribution of MPI communication

Within this document we show some results obtained on the DEEP-EST system.
Figure 2.5 shows a weak scaling of the HPC benchmark using NEST on the Cluster
Module (CM) (1 MPI process per node and 24 threads per MPI process). Figure 2.6
shows the corresponding parallel efficiency. The benchmark network model includes
plastic synapses, which need to be updated whenever they transmit a neuronal signal
thereby causing workload in addition to neuronal updates. The minimum simulation
time (among at least 5 repetitions) and the time spent communicating spikes across
MPI processes vs. number of compute nodes is shown for a test case with 1000 and
5000 neurons per thread and 11,250 synapses per neuron36.

36 Benchmarks simulated with NEST@da46542 (with timers and optimization for small-scale regime)”

for 1000 and 5000 neurons per thread

Porting applications to a Modular Supercomputer

DEEP-EST 36

Figure 2.6: Parallel efficiency for NEST running the HPC benchmark on the CM

Figure 2.7 shows the mean simulation time for the 5000 neurons case but with
subtracted communication time, which allows for a comparison with measurements
obtained using the NEST dry-run mode. A dry-run simulation is carried out by one MPI
process emulating the input from other MPI processes, which enables predictions for
large-scale simulations. For all simulation time plots lower is better. As NEST
optimizations for the small-scale and medium-scale regime were enabled, we observe
the typical increase in simulation time described above (c.f. 5g-sort, Figure 2.3), for
node counts of 64 and above.

Figure 2.7: Simulation time for NEST running the HPC benchmark on the CM: Dry-run

prediction (excluding communication time)

2. Neuroscience with NEST, Arbor and Elephant

 37 DEEP-EST

Figure 2.8: Simulation time for NEST running the MAM benchmark on the CM

Figure 2.8 shows a strong scaling of the multi-area model (MAM) benchmark using
NEST on the CM (1 MPI process per node and 24 threads per MPI process). Figure
2.9 shows the corresponding parallel efficiency. We have developed the MAM
benchmark in this project to provide a scalable benchmark network model with easily
controllable parameters and stable dynamics that captures the main performance-
relevant features of the multi-area model37 such as short synaptic transmission delays
requiring frequent communication. The benchmark network model consists of 4 million
neurons and 5,625 synapses per neuron, where all synapses are static (no additional
workload due to synaptic plasticity). The simulations scale well between 8 and 16 MPI
processes, but communication time dominates the simulation time at 32 MPI
processes. This is due to more frequent communication and less workload compared
to the NEST HPC benchmark. The effect of the NEST optimizations for the small-scale
and medium-scale regime also plays a role but cannot be distinguished from the other
factors.

37 Schmidt, M. et al (2018) doi. org/10.1371/journal.pcbi.1006359

Porting applications to a Modular Supercomputer

DEEP-EST 38

Figure 2.9: Parallel efficiency for NEST running the MAM benchmark on the CM

Figure 2.10: Weak scaling time-to-solution for the combined NEST and Arbor simulations

2. Neuroscience with NEST, Arbor and Elephant

 39 DEEP-EST

Figure 2.11: Weak scaling parallel efficiency for the Nest - Arbor coupling

Figure 2.10 and Figure 2.11 show the weak scaling behaviour of combined NEST-
Arbor simulations38. In the smallest case (1 node), NEST simulates 120,000 point
neurons while Arbor simulates 1% of this number, i.e., 1,200 compartmental neuron,
each on a single compute node. The neuron numbers are scaled linearly with the
number of compute nodes. We consider two different configurations: NEST running on
the CM and Arbor on the ESB (grey) and NEST and Arbor both running on the CM
(green). On the ESB, Arbor uses the GPU on each node, while on the CM Arbor runs
24 threads per node using AVX512. For comparison, we also show the simulation
times for the NEST part only (dotted green) and the Arbor part only (dotted blue). Note
that for ESB-only and CM-only cases experiments were limited to 16 nodes for each
of the programs due to the limited number of nodes.

The underlying Arbor simulations scale perfectly on the ESB when run alone (dotted
blue), while the simulation time for pure NEST simulations on the CM (dotted green)
scales reasonably well. The combined NEST-Arbor simulation run on CM and ESB
(grey) requires essentially the same time as the NEST simulation alone, indicating that
the MSA allows us to extend the NEST simulation to a co-simulation without runtime
penalty. Executing NEST and Arbor on the CM only leads to increased runtimes
(green), indicating the benefit of combining CM and ESB. We also find that co-
simulation on CM and ESB reduces energy consumption, see Figure 2.15.

38 NEST@abc4e0b78

Porting applications to a Modular Supercomputer

DEEP-EST 40

Figure 2.12: Weak scaling of NEST simulation on CM feeding Elephant weak/ensemble-scaling:

HPC Benchmark using NEST on CM and analyses with Elephant running on DAM

Figure 2.13: Parallel efficiency for the weak scaling NEST + Elephant run

Figure 2.12 shows an example of a NEST simulation running on the CM and sending
data for analysis in Elephant on the DAM via MUSIC39. Figure 2.13 shows the parallel
efficiency. Simulation time and parallel efficiency are shown as function of number of
CM nodes used and network size scales linearly with the number of nodes, with 24
MPI processes running on each node (to accommodate MUSICs proper support for

39 NEST@7616f3eb with bugfix; Elephant v 0.1.0 under Python 3.6.8; MUSIC@8c6b77a57 with path for

ParaStationMPI.

2. Neuroscience with NEST, Arbor and Elephant

 41 DEEP-EST

threading; approximately 940 neurons per process). The analysis is performed on a
single DAM node running two Python processes: one performing ASSET analysis
exploiting the GPU and the other performing cross-correlation analysis. Comparison of
simulation without spike transfer to the DAM (orange) and simulation with analysis on
the DAM (purple) shows that the overhead for analysis is small (approximately 10%)
and that, while not perfect, simulation time is roughly in agreement with a weak scaling
regime.

2.5.1 Our path to Exascale

Above we discussed to what extent the applications can scale at the moment. The
following subsections will outline our path to Exascale

2.5.1.1 What are the limitations – Can they be fixed?

The most visible performance limitation in our work is the relatively poor weak-scaling
performance of NEST on the CM for large numbers of neurons as shown in Figure 2.5,
which also affects the run time of co-simulations running NEST on the CM and Arbor
on the ESB as shown in Figure 2.10. In part, this weak scaling is a consequence of the
optimisations for small to medium scale simulations of the NEST 5g kernel, which
exploit the lesser degree of distribution of each neuron’s outgoing connections across
MPI processes in this regime. As the number of processes increases the exploitation
potential decreases rendering the optimisations less and less effective. The
optimisations reduce the total simulation times in this regime but due to the gradual
decrease in effectiveness distort the observed scaling behaviour on smaller systems
such as the existing CM; scaling behaviour of large-scale simulations is not affected
by this. Further optimisation will focus on simulation on Exascale systems with an aim
at reducing overall communication requirements by introducing support for local
connectivity: in real neuronal circuits, a large fraction of the connections are local, but
this locality is not yet exploited in NEST or Arbor to minimize communication.

2.5.1.2 How to use future Exascale systems

Exascale computers will be required to allow full-scale simulations of models of primate
brains at the resolution of individual neurons. Only Exascale systems will provide the
memory necessary to represent the connectivity in networks at the scale of entire
brains, the computing power needed to advance the dynamics of neurons, and the
interconnects to facilitate signal exchange between neurons. Using a network with
highly simplified structure, we demonstrated the feasibility of simulating networks on
the size of a cat brain on a major Petascale computer (K, JUQUEEN40). Since then,

40 Kunkel, S. et al. (2014) doi: 10.3389/fninf.2014.00078

Porting applications to a Modular Supercomputer

DEEP-EST 42

we have made important steps in resource efficient dry-run benchmarking41,42 and
directed communication33. Dedicated efforts as part of the DEEP-EST project have
reduced spike-delivery times43, addressing a key performance bottleneck. Parallel
activities in the EC ICT Flagship Human Brain Project44 focused on reducing the times
required to construct networks with realistic complexity in parallel and to further
optimise communication schemes for Exascale systems. This work will be pursued in
collaboration with Japanese colleagues, which will allow actual experiments on the
largest available pre-Exascale system, Fugaku, later in 2021.

2.5.1.3 Where did the DEEP-EST project help on the way to Exascale?

Comprehensive performance profiling allowed us to identify crucial performance
bottlenecks in spiking network simulations. Network models with realistic degree
(in/out-degree of O(104) per neuron) and complexity characteristic of brain networks
are represented in the simulator as large adjacency lists which are traversed in random
order due to the stochastic activity in network models. This leads to unpredictable
memory access patterns and thus inefficient caching. As part of our activities in the
DEEP-EST project, we were able to develop new spike-delivery techniques improving
caching performance and thus overall simulation performance43. The success of the
new spike-delivery algorithm was rather unexpected as the memory bottleneck
imposed by local spike routing has long been considered insuperable in neuronal
network simulation technology. The techniques are not specific to the NEST simulator
for which we have developed them, but are applicable to other simulators for pulse-
coupled networks with high connection degrees as well. We consider this a generally
useful contribution to large-scale network simulation.

Beyond this surprising success and the resulting benefit for the NEST users, our work
contributes indirectly to the development of neuromorphic systems. The technology for
simulations of spiking neuronal networks on conventional computer architectures
informs and inspires the design of neuromorphic systems, and it constitutes an
important reference benchmark for such systems regarding accuracy, energy
consumption and speed. Mitigating the von Neumann bottleneck in spiking network
simulations on conventional architectures by latency-hiding techniques challenges
neuromorphic systems. The effective use of such techniques indicates that the
memory bottleneck can likely be overcome by many-core systems as naturally each
core needs to oversee a decreasing amount of memory.

41 Kunkel, S., and Scheck, W. (2017) doi: 10.3389/fninf.2017.00040
42 Kunkel, S., and Scheck, W. In preparation.
43 Pronold, J. et al. In preparation.
44 https://www.humanbrainproject.eu, Specific Grant Agreements 2 (2018–2020) and 3 (2020–2023).

2. Neuroscience with NEST, Arbor and Elephant

 43 DEEP-EST

2.6 Energy consumption

Figure 2.14: Total energy consumption for NEST running the HPC benchmark on CM for two

different network sizes

Figure 2.14 shows the total energy consumption from the benchmark runs shown in
Figure 2.5 and Figure 2.15 shows the total energy consumption for the NEST-Arbor
co-simulations shown in Figure 2.10. While timings shown in Figure 2.5 and Figure
2.10 show the actual simulation time (propagation of network state), the total energy
consumption includes the time required for network construction and initialization
before the simulation.

For the pure NEST simulation on the CM we observe linear scaling as expected up to
32 nodes followed by a noticeably superlinear increase when simulating on 45 nodes.
For the co-simulation, scaling is nearly perfectly linear when combining up to 32 nodes
each on CM and ESB. Co-simulations on the CM alone were only performed up to
16+16 nodes, the limit set by the DEEP-EST system size at present, with higher energy
consumption when using only the CM, especially for 16+16 nodes case. This indicates
energy efficiency gains from the modular system architecture.

Porting applications to a Modular Supercomputer

DEEP-EST 44

Figure 2.15: Total energy consumption for NEST and Arbor co-simulation running on CM and
ESB (grey) and on the CM alone (green). The number of nodes is per simulator, i.e., 16 nodes

means NEST running on 16 nodes (always CM) and Arbor running on 16 different nodes (either
ESB or CM)

2.7 Performance comparison
After over three years of development, this subsection compares our current
application status with their status at the start of the DEEP-EST project.

2.7.1 New spike-delivery algorithm

Figure 2.16: Simulation time reduction for new spike-delivery algorithms

2. Neuroscience with NEST, Arbor and Elephant

 45 DEEP-EST

Figure 2.17: Optimisation factor gained by the new spike delivery

Sparse connectivity combined with irregular spiking activity leads to a practically
random memory-access pattern during spike delivery. Seemingly this is a worst-case
situation for the von Neumann architecture, where for any computation the content of
a respective memory unit needs to be transported to the central processing unit and
the result needs to be transported back. In weak-scaling spike delivery dominates the
simulation time33. To overcome the memory bottleneck, we have rearranged the
elementary algorithmic steps required to deliver the incoming, essentially random spike
data to the process-local targets, such that they can be more efficiently processed by
conventional computer hardware. The redesign also includes common latency-hiding
techniques such as software prefetching and software pipelining. Figure 2.16 shows a
significant reduction in simulation time as a result of new algorithms for spike-delivery
in NEST, when comparing the HPC benchmark (2 MPI process per node with 12
threads per process and 1000 or 5000 neurons per thread) and the same case with
the new spike-delivery enabled45. Figure 2.17 shows the optimisation factor gained by
employing the new spike delivery. Note that in this version of the HPC benchmark all
synapses were static (no additional workload due to synaptic plasticity), which allowed
us to better expose the memory bottleneck.

45 Optimized spike delivery: HPC-Benchmark simulated with NEST@8f1b08c (with timers and

optimization for small-scale regime); reference data simulated with NEST@8897668.

Porting applications to a Modular Supercomputer

DEEP-EST 46

2.8 Conclusion
Running brain-model simulations on Exascale computers to explore brain dynamics at
the scale of full brains is a major challenge in computational neuroscience and in
simulation technology. The focus put in the DEEP-EST project on improving
application scaling and performance has allowed us to test new techniques and to
understand factors affecting performance of simulators, especially NEST, even better.
This has driven the development of more efficient spike-delivery techniques and the
development of an advanced dry-run mode. The latter allows benchmarking of large
parallel simulations on a small subset of the relevant system and presents an approach
also viable for other, comparable tools.

In situ processing of spike data generated by large-scale brain simulations will be
essential as networks are scaled up, since storing a raw spike during simulation and
re-loading it for analysis becomes infeasible. Coupling NEST-Arbor and NEST-
Elephant enables combining on the one hand simulations at different levels of
description and on the other hand simulations and analysis. Our work in the DEEP-
EST project in this area has shown that a hybrid approach of distributing different parts
of a workflow across different modules of a MSA clearly holds potential.

