000905895 001__ 905895
000905895 005__ 20230522125345.0
000905895 0247_ $$2doi$$a10.1002/hbm.25778
000905895 0247_ $$2ISSN$$a1065-9471
000905895 0247_ $$2ISSN$$a1097-0193
000905895 0247_ $$2Handle$$a2128/31060
000905895 0247_ $$2WOS$$aWOS:000746511800001
000905895 037__ $$aFZJ-2022-01095
000905895 082__ $$a610
000905895 1001_ $$0P:(DE-Juel1)176967$$aKaulen, Nicolas$$b0$$ufzj
000905895 245__ $$amGluR 5 and GABA A receptor‐specific parametric PET atlas construction— PET / MR data processing pipeline, validation, and application
000905895 260__ $$aNew York, NY$$bWiley-Liss$$c2022
000905895 3367_ $$2DRIVER$$aarticle
000905895 3367_ $$2DataCite$$aOutput Types/Journal article
000905895 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650621642_27939
000905895 3367_ $$2BibTeX$$aARTICLE
000905895 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905895 3367_ $$00$$2EndNote$$aJournal Article
000905895 520__ $$aThe glutamate and γ-aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non-displaceable binding potential (BPND), and total distribution volume (VT) based on simultaneously acquired bolus-infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11C]ABP688-PET/MR (13 healthy male non-smokers, 26.6 ± 7.0 years) and [11C]Flumazenil-PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as VT and BPND atlases of mGluR5 and GABAA, were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP = 3.0 ± 1.0% and δFMZ = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP = 4.0%–16.0%, σFMZ = 3.9%–9.5%). An evaluation of PET-to-PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15O]H2O-template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions.
000905895 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000905895 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905895 7001_ $$0P:(DE-Juel1)164396$$aRajkumar, Ravichandran$$b1
000905895 7001_ $$0P:(DE-Juel1)171754$$aRégio Brambilla, Cláudia$$b2
000905895 7001_ $$0P:(DE-Juel1)144215$$aMauler, Jörg$$b3$$ufzj
000905895 7001_ $$0P:(DE-Juel1)169201$$aRamkiran, Shukti$$b4$$ufzj
000905895 7001_ $$0P:(DE-Juel1)172782$$aOrth, Linda$$b5
000905895 7001_ $$0P:(DE-Juel1)174570$$aSbaihat, Hasan$$b6$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131831$$aLang, Markus$$b7$$ufzj
000905895 7001_ $$0P:(DE-HGF)0$$aWyss, Christine$$b8
000905895 7001_ $$0P:(DE-Juel1)131788$$aRota Kops, Elena$$b9$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b10$$ufzj
000905895 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b11$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b12$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b13$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Joseph$$b14$$ufzj
000905895 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b15$$ufzj
000905895 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b16$$ufzj
000905895 7001_ $$0P:(DE-HGF)0$$aVeselinović, Tanja$$b17
000905895 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b18$$eCorresponding author$$ufzj
000905895 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25778$$gp. hbm.25778$$n7$$p2148-2163$$tHuman brain mapping$$v43$$x1065-9471$$y2022
000905895 8564_ $$uhttps://juser.fz-juelich.de/record/905895/files/1200177349_MDPL_K10449_Invoice.pdf
000905895 8564_ $$uhttps://juser.fz-juelich.de/record/905895/files/Human%20Brain%20Mapping%20-%202022%20-%20Kaulen%20-%20mGluR5%20and%20GABAA%20receptor%E2%80%90specific%20parametric%20PET%20atlas%20construction%20PET%20MR%20data.pdf$$yOpenAccess
000905895 8767_ $$8W-2021-00612-b$$92022-02-10$$d2022-12-28$$eAPC$$jZahlung erfolgt$$z1200177349
000905895 909CO $$ooai:juser.fz-juelich.de:905895$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176967$$aForschungszentrum Jülich$$b0$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164396$$aForschungszentrum Jülich$$b1$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171754$$aForschungszentrum Jülich$$b2$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144215$$aForschungszentrum Jülich$$b3$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169201$$aForschungszentrum Jülich$$b4$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174570$$aForschungszentrum Jülich$$b6$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131831$$aForschungszentrum Jülich$$b7$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131788$$aForschungszentrum Jülich$$b9$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b10$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b11$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b12$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b13$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b14$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b15$$kFZJ
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b16$$kFZJ
000905895 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b17$$kRWTH
000905895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b18$$kFZJ
000905895 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000905895 9141_ $$y2022
000905895 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905895 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000905895 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000905895 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000905895 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000905895 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905895 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-22$$wger
000905895 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:46:01Z
000905895 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-27T20:46:01Z
000905895 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:46:01Z
000905895 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000905895 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM BRAIN MAPP : 2021$$d2022-11-22
000905895 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000905895 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000905895 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000905895 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000905895 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000905895 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000905895 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000905895 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x3
000905895 980__ $$ajournal
000905895 980__ $$aVDB
000905895 980__ $$aUNRESTRICTED
000905895 980__ $$aI:(DE-Juel1)INM-11-20170113
000905895 980__ $$aI:(DE-Juel1)INM-4-20090406
000905895 980__ $$aI:(DE-Juel1)VDB1046
000905895 980__ $$aI:(DE-Juel1)INM-5-20090406
000905895 980__ $$aAPC
000905895 9801_ $$aAPC
000905895 9801_ $$aFullTexts