Home > Publications database > mGluR 5 and GABA A receptor‐specific parametric PET atlas construction— PET / MR data processing pipeline, validation, and application > print |
001 | 905895 | ||
005 | 20230522125345.0 | ||
024 | 7 | _ | |a 10.1002/hbm.25778 |2 doi |
024 | 7 | _ | |a 1065-9471 |2 ISSN |
024 | 7 | _ | |a 1097-0193 |2 ISSN |
024 | 7 | _ | |a 2128/31060 |2 Handle |
024 | 7 | _ | |a WOS:000746511800001 |2 WOS |
037 | _ | _ | |a FZJ-2022-01095 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kaulen, Nicolas |0 P:(DE-Juel1)176967 |b 0 |u fzj |
245 | _ | _ | |a mGluR 5 and GABA A receptor‐specific parametric PET atlas construction— PET / MR data processing pipeline, validation, and application |
260 | _ | _ | |a New York, NY |c 2022 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1650621642_27939 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The glutamate and γ-aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non-displaceable binding potential (BPND), and total distribution volume (VT) based on simultaneously acquired bolus-infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11C]ABP688-PET/MR (13 healthy male non-smokers, 26.6 ± 7.0 years) and [11C]Flumazenil-PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as VT and BPND atlases of mGluR5 and GABAA, were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP = 3.0 ± 1.0% and δFMZ = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP = 4.0%–16.0%, σFMZ = 3.9%–9.5%). An evaluation of PET-to-PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15O]H2O-template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Rajkumar, Ravichandran |0 P:(DE-Juel1)164396 |b 1 |
700 | 1 | _ | |a Régio Brambilla, Cláudia |0 P:(DE-Juel1)171754 |b 2 |
700 | 1 | _ | |a Mauler, Jörg |0 P:(DE-Juel1)144215 |b 3 |u fzj |
700 | 1 | _ | |a Ramkiran, Shukti |0 P:(DE-Juel1)169201 |b 4 |u fzj |
700 | 1 | _ | |a Orth, Linda |0 P:(DE-Juel1)172782 |b 5 |
700 | 1 | _ | |a Sbaihat, Hasan |0 P:(DE-Juel1)174570 |b 6 |u fzj |
700 | 1 | _ | |a Lang, Markus |0 P:(DE-Juel1)131831 |b 7 |u fzj |
700 | 1 | _ | |a Wyss, Christine |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Rota Kops, Elena |0 P:(DE-Juel1)131788 |b 9 |u fzj |
700 | 1 | _ | |a Scheins, Jürgen |0 P:(DE-Juel1)131791 |b 10 |u fzj |
700 | 1 | _ | |a Neumaier, Bernd |0 P:(DE-Juel1)166419 |b 11 |u fzj |
700 | 1 | _ | |a Ermert, Johannes |0 P:(DE-Juel1)131818 |b 12 |u fzj |
700 | 1 | _ | |a Herzog, Hans |0 P:(DE-Juel1)131768 |b 13 |u fzj |
700 | 1 | _ | |a Langen, Karl-Joseph |0 P:(DE-Juel1)131777 |b 14 |u fzj |
700 | 1 | _ | |a Lerche, Christoph |0 P:(DE-Juel1)164254 |b 15 |u fzj |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 16 |u fzj |
700 | 1 | _ | |a Veselinović, Tanja |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Neuner, Irene |0 P:(DE-Juel1)131781 |b 18 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/hbm.25778 |g p. hbm.25778 |0 PERI:(DE-600)1492703-2 |n 7 |p 2148-2163 |t Human brain mapping |v 43 |y 2022 |x 1065-9471 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/905895/files/1200177349_MDPL_K10449_Invoice.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/905895/files/Human%20Brain%20Mapping%20-%202022%20-%20Kaulen%20-%20mGluR5%20and%20GABAA%20receptor%E2%80%90specific%20parametric%20PET%20atlas%20construction%20PET%20MR%20data.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:905895 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176967 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)164396 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171754 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)144215 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169201 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)174570 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131831 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131788 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131791 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)166419 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)131818 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131768 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)131777 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)164254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 16 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 17 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 18 |6 P:(DE-Juel1)131781 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-22 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-22 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|