001     905929
005     20240709094406.0
024 7 _ |a 10.1016/j.cej.2022.134774
|2 doi
024 7 _ |a 1385-8947
|2 ISSN
024 7 _ |a 1873-3212
|2 ISSN
024 7 _ |a 2128/30630
|2 Handle
024 7 _ |a WOS:000774904900005
|2 WOS
037 _ _ |a FZJ-2022-01111
100 1 _ |a Yang, Aikai
|0 P:(DE-Juel1)180575
|b 0
|u fzj
245 _ _ |a Fabrication of thin sheets of the sodium superionic conductor Na5YSi4O12 with tape casting
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670574286_8330
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All-solid-state sodium batteries (ASSNBs), which combine the benefits of high safety and low cost, are expectedto be an alternative or complementary storage technology to lithium ion batteries. Herein, we developed anaqueous tape casting technique for the continuous fabrication of ceramic sheets made of silicate-based Na5YSi4O12(NYS) Na+ ion superionic conductor for the first time. After sintering, the ceramics showed a total conductivityof 1.0 mS cm􀀀 1 at room-temperature, low total activation energy of 0.30 eV, and wide electrochemicalwindow of over 8 V. The critical current density of NYS tape against Na-metal electrodes can reach 2.2 mA cm􀀀 2and the galvanostatic cycling time is over 280 h under 0.8 mA cm􀀀 2 and 0.8 mAh cm􀀀 2. The obtained tape hashigh crystalline purity, dense microstructure, favorable mechanical properties (hardness H of 2 GPa and elasticmodulus E of 45 GPa). This work not only highlights the potential of the scarcely studied silicate-based NYS ionicconductor as a functional separator, but also presents a cost-efficient and eco-friendly continuous fabricationusing the aqueous tape casting technique, thus being expected to boost the practical application of NYS as solidstateelectrolyte in ASSNBs.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ye, Ruijie
|0 P:(DE-Juel1)176118
|b 1
|u fzj
700 1 _ |a Li, Xiaoqiang
|0 P:(DE-Juel1)177066
|b 2
|u fzj
700 1 _ |a Lu, Qiongqiong
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Song, Huimin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Grüner, Daniel
|0 P:(DE-Juel1)145209
|b 5
|u fzj
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 6
|e Corresponding author
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 7
|u fzj
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 8
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 9
|u fzj
773 _ _ |a 10.1016/j.cej.2022.134774
|g Vol. 435, p. 134774 -
|0 PERI:(DE-600)2012137-4
|p 134774 -
|t The chemical engineering journal
|v 435
|y 2022
|x 1385-8947
856 4 _ |u https://juser.fz-juelich.de/record/905929/files/Manuscript.docx
|y Published on 2022-01-21. Available in OpenAccess from 2024-01-21.
909 C O |o oai:juser.fz-juelich.de:905929
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180575
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176118
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177066
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145209
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG J : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CHEM ENG J : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21