001     905938
005     20230123110555.0
024 7 _ |a 10.1016/j.molp.2022.01.003
|2 doi
024 7 _ |a 1674-2052
|2 ISSN
024 7 _ |a 1752-9859
|2 ISSN
024 7 _ |a 1752-9867
|2 ISSN
024 7 _ |a 2128/30935
|2 Handle
024 7 _ |a altmetric:120648354
|2 altmetric
024 7 _ |a pmid:35026436
|2 pmid
024 7 _ |a WOS:000767562700006
|2 WOS
037 _ _ |a FZJ-2022-01120
082 _ _ |a 580
100 1 _ |a Hoopes, Genevieve
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Phased, chromosome-scale genome assemblies of tetraploid potato reveals a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity
260 _ _ |a Oxford
|c 2022
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648472189_16318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder’s efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Meng, Xiaoxi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hamilton, John P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Achakkagari, Sai Reddy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a de Alves Freitas Guesdes, Fernanda
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bolger, Marie E.
|0 P:(DE-Juel1)162335
|b 5
700 1 _ |a Coombs, Joseph J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Esselink, Danny
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kaiser, Natalie R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kodde, Linda
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kyriakidou, Maria
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lavrijssen, Brian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a van Lieshout, Natascha
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Shereda, Rachel
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Tuttle, Heather K.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vaillancourt, Brieanne
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Wood, Joshua C.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a de Boer, Jan M.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Bornowski, Nolan
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Bourke, Peter
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Douches, David
|0 P:(DE-HGF)0
|b 20
700 1 _ |a van Eck, Herman J.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Ellis, Dave
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Feldman, Max J.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Gardner, Kyle M.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Hopman, Johannes C. P.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Jiang, Jiming
|0 P:(DE-HGF)0
|b 26
700 1 _ |a De Jong, Walter S.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Kuhl, Joseph C.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Novy, Richard G.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Oome, Stan
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Sathuvalli, Vidyasagar
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Tan, Ek Han
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Ursum, Remco A.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Vales, M. Isabel
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Vining, Kelly
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Visser, Richard G. F.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Vossen, Jack
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Yencho, G. Craig
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Anglin, Noelle L.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Bachem, Christian W. B.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Endelman, Jeffrey B.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Shannon, Laura M.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Strömvik, Martina V.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Tai, Helen H.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Usadel, Björn
|0 P:(DE-Juel1)145719
|b 45
700 1 _ |a Buell, C. Robin
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Finkers, Richard
|0 0000-0002-4368-8058
|b 47
|e Corresponding author
773 _ _ |a 10.1016/j.molp.2022.01.003
|g p. S167420522200003X
|0 PERI:(DE-600)2393618-6
|n 3
|p 520-536
|t Molecular plant
|v 15
|y 2022
|x 1674-2052
856 4 _ |u https://juser.fz-juelich.de/record/905938/files/1-s2.0-S167420522200003X-main-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:905938
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 45
|6 P:(DE-Juel1)145719
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL PLANT : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-18
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b MOL PLANT : 2021
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21