000905991 001__ 905991
000905991 005__ 20230123110556.0
000905991 0247_ $$2doi$$a10.3389/fcell.2021.724778
000905991 0247_ $$2Handle$$a2128/30588
000905991 0247_ $$2altmetric$$aaltmetric:120362756
000905991 0247_ $$2pmid$$a35047492
000905991 0247_ $$2WOS$$aWOS:000751080600001
000905991 037__ $$aFZJ-2022-01165
000905991 082__ $$a570
000905991 1001_ $$0P:(DE-HGF)0$$aCruz-Garcia, Yiliam$$b0
000905991 245__ $$aNanoenviroments of the β-Subunit of L-Type Voltage-Gated Calcium Channels in Adult Cardiomyocytes
000905991 260__ $$aLausanne$$bFrontiers Media$$c2022
000905991 3367_ $$2DRIVER$$aarticle
000905991 3367_ $$2DataCite$$aOutput Types/Journal article
000905991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643270182_16372
000905991 3367_ $$2BibTeX$$aARTICLE
000905991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905991 3367_ $$00$$2EndNote$$aJournal Article
000905991 520__ $$aIn cardiomyocytes, Ca2+ influx through L-type voltage-gated calcium channels (LTCCs) following membrane depolarization regulates crucial Ca2+-dependent processes including duration and amplitude of the action potentials and excitation-contraction coupling. LTCCs are heteromultimeric proteins composed of the Cavα1, Cavβ, Cavα2δ and Cavγ subunits. Here, using ascorbate peroxidase (APEX2)-mediated proximity labeling and quantitative proteomics, we identified 61 proteins in the nanoenvironments of Cavβ2 in cardiomyocytes. These proteins are involved in diverse cellular functions such as cellular trafficking, cardiac contraction, sarcomere organization and excitation-contraction coupling. Moreover, pull-down assays and co-immunoprecipitation analyses revealed that Cavβ2 interacts with the ryanodine receptor 2 (RyR2) in adult cardiomyocytes, probably coupling LTCCs and the RyR2 into a supramolecular complex at the dyads. This interaction is mediated by the Src-homology 3 domain of Cavβ2 and is necessary for an effective pacing frequency-dependent increase of the Ca2+-induced Ca2+ release mechanism in cardiomyocytes.
000905991 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000905991 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905991 7001_ $$0P:(DE-HGF)0$$aBarkovits, Katalin$$b1
000905991 7001_ $$0P:(DE-HGF)0$$aKohlhaas, Michael$$b2
000905991 7001_ $$0P:(DE-HGF)0$$aPickel, Simone$$b3
000905991 7001_ $$0P:(DE-HGF)0$$aGulentz, Michelle$$b4
000905991 7001_ $$0P:(DE-HGF)0$$aHeindl, Cornelia$$b5
000905991 7001_ $$0P:(DE-HGF)0$$aPfeiffer, Kathy$$b6
000905991 7001_ $$0P:(DE-HGF)0$$aEder-Negrin, Petra$$b7
000905991 7001_ $$0P:(DE-HGF)0$$aMaack, Christoph$$b8
000905991 7001_ $$0P:(DE-HGF)0$$aMarcus, Katrin$$b9
000905991 7001_ $$0P:(DE-HGF)0$$aKuhn, Michaela$$b10
000905991 7001_ $$0P:(DE-Juel1)180990$$aMiranda Laferte, Erick$$b11$$eCorresponding author$$ufzj
000905991 773__ $$0PERI:(DE-600)2737824-X$$a10.3389/fcell.2021.724778$$gVol. 9, p. 724778$$p724778$$tFrontiers in cell and developmental biology$$v9$$x2296-634X$$y2022
000905991 8564_ $$uhttps://juser.fz-juelich.de/record/905991/files/fcell-09-724778.pdf$$yOpenAccess
000905991 8767_ $$d2022-12-29$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507,50 USD
000905991 909CO $$ooai:juser.fz-juelich.de:905991$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000905991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180990$$aForschungszentrum Jülich$$b11$$kFZJ
000905991 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000905991 9141_ $$y2022
000905991 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000905991 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000905991 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000905991 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000905991 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000905991 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000905991 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000905991 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000905991 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000905991 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000905991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CELL DEV BIOL : 2021$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:29:32Z
000905991 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:29:32Z
000905991 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:29:32Z
000905991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000905991 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CELL DEV BIOL : 2021$$d2022-11-12
000905991 920__ $$lyes
000905991 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000905991 9801_ $$aFullTexts
000905991 980__ $$ajournal
000905991 980__ $$aVDB
000905991 980__ $$aUNRESTRICTED
000905991 980__ $$aI:(DE-Juel1)IBI-1-20200312
000905991 980__ $$aAPC