000905999 001__ 905999
000905999 005__ 20240712113059.0
000905999 0247_ $$2doi$$a10.1002/aenm.202103187
000905999 0247_ $$2ISSN$$a1614-6832
000905999 0247_ $$2ISSN$$a1614-6840
000905999 0247_ $$2Handle$$a2128/30931
000905999 0247_ $$2altmetric$$aaltmetric:119625114
000905999 0247_ $$2WOS$$aWOS:000732690000001
000905999 037__ $$aFZJ-2022-01172
000905999 082__ $$a050
000905999 1001_ $$0P:(DE-HGF)0$$aHuang, Zhuojun$$b0$$eFirst author
000905999 245__ $$aEffects of Polymer Coating Mechanics at Solid‐Electrolyte Interphase for Stabilizing Lithium Metal Anodes
000905999 260__ $$aWeinheim$$bWiley-VCH$$c2022
000905999 3367_ $$2DRIVER$$aarticle
000905999 3367_ $$2DataCite$$aOutput Types/Journal article
000905999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648469125_14541
000905999 3367_ $$2BibTeX$$aARTICLE
000905999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000905999 3367_ $$00$$2EndNote$$aJournal Article
000905999 520__ $$aLithium metal batteries are next-generation energy storage devices that rely on the stable electrodeposition of lithium metal during the charging process. The major challenge associated with this battery chemistry is related to the uneven deposition that leads to dendritic growth and poor coulombic efficiency (CE). A promising strategy for addressing this challenge is utilizing a polymer coating on the anodic surface. While several works in the past have evaluated polymer coatings, the requirements for polymer design are still unclear. In this work, the effect of polymer dynamics on lithium metal deposition is specifically investigated. Electrolyte (solvent) blocking perfluoropolyether polymer networks with evenly spaced H-bonding sites of various strengths are designed, resulting in significant differences in the molecular ordering, as analyzed by X-ray scattering measurements. The differences in the H-bonding strength directly impact the mechanical properties of these materials, thus providing a controlled set of samples with a range of polymer dynamics for electrodeposition studies. Finally, a systematic evaluation of the lithium metal electrodeposition quality with these polymers as anodic coating shows that polymers with flowability or faster polymer dynamics exhibit higher CE. These experimental findings provide rational design principles for soft polymer coatings on lithium metal anodes.
000905999 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000905999 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000905999 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x2
000905999 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000905999 7001_ $$0P:(DE-HGF)0$$aChoudhury, Snehashis$$b1
000905999 7001_ $$0P:(DE-HGF)0$$aPaul, Neelima$$b2
000905999 7001_ $$0P:(DE-Juel1)179050$$aThienenkamp, Johannes Helmut$$b3$$ufzj
000905999 7001_ $$0P:(DE-Juel1)164855$$aLennartz, Peter$$b4$$ufzj
000905999 7001_ $$0P:(DE-HGF)0$$aGong, Huaxin$$b5
000905999 7001_ $$0P:(DE-HGF)0$$aMüller-Buschbaum, Peter$$b6
000905999 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b7$$ufzj
000905999 7001_ $$0P:(DE-HGF)0$$aGilles, Ralph$$b8$$eCorresponding author
000905999 7001_ $$0P:(DE-HGF)0$$aBao, Zhenan$$b9$$eCorresponding author
000905999 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202103187$$gp. 2103187 -$$n5$$p2103187 -$$tAdvanced energy materials$$v12$$x1614-6832$$y2022
000905999 8564_ $$uhttps://juser.fz-juelich.de/record/905999/files/Advanced%20Energy%20Materials%20-%202021%20-%20Huang%20-%20Effects%20of%20Polymer%20Coating%20Mechanics%20at%20Solid%E2%80%90Electrolyte%20Interphase%20for.pdf$$yRestricted
000905999 8564_ $$uhttps://juser.fz-juelich.de/record/905999/files/Effects%20of%20Polymer%20Coating%20Mechanics.pdf$$yPublished on 2021-12-22. Available in OpenAccess from 2022-12-22.
000905999 909CO $$ooai:juser.fz-juelich.de:905999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000905999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179050$$aForschungszentrum Jülich$$b3$$kFZJ
000905999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164855$$aForschungszentrum Jülich$$b4$$kFZJ
000905999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b7$$kFZJ
000905999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000905999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000905999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2
000905999 9141_ $$y2022
000905999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000905999 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000905999 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000905999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000905999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2021$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000905999 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2021$$d2022-11-12
000905999 920__ $$lyes
000905999 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000905999 9801_ $$aFullTexts
000905999 980__ $$ajournal
000905999 980__ $$aVDB
000905999 980__ $$aUNRESTRICTED
000905999 980__ $$aI:(DE-Juel1)IEK-12-20141217
000905999 981__ $$aI:(DE-Juel1)IMD-4-20141217