Hauptseite > Publikationsdatenbank > Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death > print |
001 | 906017 | ||
005 | 20230123110556.0 | ||
024 | 7 | _ | |a 10.1016/j.csbj.2021.12.029 |2 doi |
024 | 7 | _ | |a 2128/30627 |2 Handle |
024 | 7 | _ | |a altmetric:121517667 |2 altmetric |
024 | 7 | _ | |a pmid:35070167 |2 pmid |
024 | 7 | _ | |a WOS:000819903300015 |2 WOS |
037 | _ | _ | |a FZJ-2022-01182 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Margreiter, Michael A |0 P:(DE-Juel1)165176 |b 0 |
245 | _ | _ | |a Small-molecule modulators of TRMT2A decrease PolyQ aggregation and PolyQ-induced cell death |
260 | _ | _ | |a Gotenburg |c 2022 |b Research Network of Computational and Structural Biotechnology (RNCSB) |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1653055765_17265 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Polyglutamine (polyQ) diseases are characterized by an expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats encoding for an uninterrupted prolonged polyQ tract. We previously identified TRMT2A as a strong modifier of polyQ-induced toxicity in an unbiased large-scale screen in Drosophila melanogaster. This work aimed at identifying and validating pharmacological TRMT2A inhibitors as treatment opportunities for polyQ diseases in humans. Computer-aided drug discovery was implemented to identify human TRMT2A inhibitors. Additionally, the crystal structure of one protein domain, the RNA recognition motif (RRM), was determined, and Biacore experiments with the RRM were performed. The identified molecules were validated for their potency to reduce polyQ aggregation and polyQ-induced cell death in human HEK293T cells and patient derived fibroblasts. Our work provides a first step towards pharmacological inhibition of this enzyme and indicates TRMT2A as a viable drug target for polyQ diseases. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Witzenberger, Monika |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wasser, Yasmine |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Davydova, Elena |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Janowski, Robert |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Metz, Jonas |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Habib, Pardes |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Sahnoun, Sabri E. M. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Sobisch, Carina |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Poma, Benedetta |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Palomino-Hernandez, Oscar |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Wagner, Mirko |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Carell, Thomas |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 13 |u fzj |
700 | 1 | _ | |a Schulz, Jörg B. |0 P:(DE-Juel1)171786 |b 14 |u fzj |
700 | 1 | _ | |a Niessing, Dierk |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Voigt, Aaron |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Rossetti, Giulia |0 P:(DE-Juel1)145921 |b 17 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.csbj.2021.12.029 |g Vol. 20, p. 443 - 458 |0 PERI:(DE-600)2694435-2 |p 443 - 458 |t Computational and structural biotechnology journal |v 20 |y 2022 |x 2001-0370 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906017/files/Invoice_OAD0000177738.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906017/files/1-s2.0-S2001037021005389-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906017 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)171786 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 17 |6 P:(DE-Juel1)145921 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 1 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT STRUCT BIOTEC : 2021 |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-08T10:59:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-08T10:59:40Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-08T10:59:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMPUT STRUCT BIOTEC : 2021 |d 2022-11-18 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 4 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|