000906022 001__ 906022
000906022 005__ 20230307110509.0
000906022 0247_ $$2doi$$a10.3390/molecules27030768
000906022 0247_ $$2ISSN$$a1420-3049
000906022 0247_ $$2Handle$$a2128/30656
000906022 0247_ $$2pmid$$a35164033
000906022 0247_ $$2WOS$$aWOS:000760507600001
000906022 037__ $$aFZJ-2022-01187
000906022 082__ $$a540
000906022 1001_ $$00000-0001-9104-281X$$aUddin, M. Shuza$$b0
000906022 245__ $$aPositron Emission Intensity in the Decay of 86gY for Use in Dosimetry Studies
000906022 260__ $$aBasel$$bMDPI$$c2022
000906022 3367_ $$2DRIVER$$aarticle
000906022 3367_ $$2DataCite$$aOutput Types/Journal article
000906022 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644227097_21040
000906022 3367_ $$2BibTeX$$aARTICLE
000906022 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906022 3367_ $$00$$2EndNote$$aJournal Article
000906022 520__ $$aThe β+-emitting radionuclide 86gY (t1/2 = 14.7 h) forms a matched-pair with the β−-emitting therapeutic radionuclide 90Y (t1/2 = 2.7 d) for theranostic application in medicine. This approach demands a precise knowledge of the positron emission probability of the PET nuclide which was until recently rather uncertain for 86gY. In this work, an 86gY source of high radionuclidic purity was prepared and a direct measurement of the positron emission intensity per 100 decay of the parent (hereafter “positron emission intensity”) was performed using high-resolution HPGe detector γ-ray spectroscopy. The electron capture intensity was also determined as an additional check by measuring the Kα and Kβ X-rays of energies 14.1 and 15.8 keV, respectively, using a low energy HPGe detector. From those measurements, normalized values of 27.2 ± 2.0% for β+-emission and 72.8 ± 2.0% for EC were obtained. These results are in excellent agreement with values recently reported in the literature based on a detailed decay scheme study.
000906022 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000906022 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906022 7001_ $$0P:(DE-Juel1)131840$$aQaim, Syed M.$$b1$$eCorresponding author
000906022 7001_ $$0P:(DE-Juel1)131846$$aScholten, Bernhard$$b2
000906022 7001_ $$0P:(DE-HGF)0$$aBasunia, M. Shamsuzzoha$$b3
000906022 7001_ $$00000-0002-9589-1752$$aBernstein, Lee A.$$b4
000906022 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b5
000906022 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b6
000906022 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules27030768$$gVol. 27, no. 3, p. 768 -$$n3$$p768 -$$tMolecules$$v27$$x1420-3049$$y2022
000906022 8564_ $$uhttps://juser.fz-juelich.de/record/906022/files/Invoice_reprints-molecules27030768.pdf
000906022 8564_ $$uhttps://juser.fz-juelich.de/record/906022/files/molecules-27-00768.pdf$$yOpenAccess
000906022 8767_ $$827030768$$92022-02-02$$d2022-02-07$$eReprint$$jZahlung erfolgt$$zBelegnr. 1200177146
000906022 8767_ $$8102005$$92022-03-02$$d2022-09-14$$eAPC$$jZahlung erfolgt$$zOABLE
000906022 909CO $$ooai:juser.fz-juelich.de:906022$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000906022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131840$$aForschungszentrum Jülich$$b1$$kFZJ
000906022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131846$$aForschungszentrum Jülich$$b2$$kFZJ
000906022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b5$$kFZJ
000906022 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b6$$kFZJ
000906022 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000906022 9141_ $$y2022
000906022 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906022 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906022 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906022 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906022 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906022 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906022 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2021$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-17T19:51:29Z
000906022 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-17T19:51:29Z
000906022 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-17T19:51:29Z
000906022 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000906022 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-23
000906022 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000906022 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906022 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906022 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000906022 920__ $$lyes
000906022 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000906022 980__ $$ajournal
000906022 980__ $$aVDB
000906022 980__ $$aUNRESTRICTED
000906022 980__ $$aI:(DE-Juel1)INM-5-20090406
000906022 980__ $$aAPC
000906022 9801_ $$aAPC
000906022 9801_ $$aFullTexts