001     906055
005     20230522125348.0
024 7 _ |a 10.1016/j.ultramic.2022.113476
|2 doi
024 7 _ |a 0304-3991
|2 ISSN
024 7 _ |a 1879-2723
|2 ISSN
024 7 _ |a 2128/30675
|2 Handle
024 7 _ |a WOS:000790517100004
|2 WOS
037 _ _ |a FZJ-2022-01199
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Song, Dongsheng
|0 P:(DE-Juel1)176812
|b 0
|e Corresponding author
245 _ _ |a Prospect for measuring two-dimensional van der Waals magnets by electron magnetic chiral dichroism
260 _ _ |a Amsterdam
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1644588827_27781
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two-dimensional (2D) van der Waals magnets have drawn considerable attention in recent years triggered by the huge interest in novel magnetism and spintronic devices. Magnetic measurement of 2D van der Waals (vdW) magnets is crucial to understand the physical origin of magnetism in 2D limits. Therefore, advanced magnetic characterization techniques are highly required. However, only a limited number of such techniques are available due to the extremely small volume of 2D vdW magnets. Here, we introduce the electron magnetic chiral dichroism (EMCD) technique in transmission electron microscope (TEM) to measure 2D vdW crystals. In comparison with some other already-employed techniques in 2D magnets, EMCD is able to quantitatively measure magnetic parameters in three orthogonal directions at nanometer or even at atomic scale. We then perform EMCD simulations on several typical 2D vdW magnets with respect to the accelerating voltage, the number of atomic layers and beam tilt under zone axial orientation. The intensity and distribution of EMCD signals in three orthogonal directions are given in the diffraction plane, thereby providing an optimized design to achieve EMCD measurements. Finally, we discuss the signal-to-noise-ratio and required electron dose in order to obtain a measurable EMCD signal for 2D vdW magnets. Our results provide a feasibility analysis and guideline to measure 2D vdW magnets in future experiments.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zheng, Fengshan
|0 P:(DE-Juel1)165965
|b 1
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 2
773 _ _ |a 10.1016/j.ultramic.2022.113476
|g Vol. 234, p. 113476 -
|0 PERI:(DE-600)1479043-9
|p 113476 -
|t Ultramicroscopy
|v 234
|y 2022
|x 0304-3991
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/906055/files/1-s2.0-S0304399122000134-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/906055/files/Prospect%20for%20measuring%20two-dimensional%20van%20der%20Waals%20magnets%20by%20Electron%20Magnetic%20Chiral%20Dichroism.pdf
909 C O |o oai:juser.fz-juelich.de:906055
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176812
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ULTRAMICROSCOPY : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-15
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21