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ABSTRACT 

Background: The BRAF V600E mutation is present in approximately 50% of patients 

with melanoma brain metastases and an important prerequisite for response to 

targeted therapies, particularly BRAF inhibitors. As heterogeneity in terms of BRAF 

mutation status may occur in melanoma patients, a wild-type extracranial primary 

tumor does not necessarily rule out a targetable mutation in brain metastases using 

BRAF inhibitors. We evaluated the potential of MRI radiomics for a non-invasive 

prediction of the intracranial BRAF mutation status. 

 

Methods: Fifty-nine patients with melanoma brain metastases from two university 

brain tumor centers (group 1, 45 patients; group 2, 14 patients) underwent tumor 

resection with subsequent genetic analysis of the intracranial BRAF mutation status. 

Preoperative contrast-enhanced MRI was manually segmented and analyzed. Group 

1 was used for model training and validation, group 2 for model testing. After radiomics 

feature extraction, a test-retest analysis was performed to identify robust features prior 

to feature selection. Finally, the best performing radiomics model was applied to the 

test data. Diagnostic performances were evaluated using receiver operating 

characteristic (ROC) analyses. 

 

Results: 22 of 45 patients (49%) in group 1, and 8 of 14 patients (57%) in group 2 had 

an intracranial BRAF V600E mutation. A linear support vector machine classifier using 

a six-parameter radiomics signature yielded an area under the ROC curve of 0.92 

(sensitivity, 83%; specificity, 88%) in the test data. 
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Conclusions: The developed radiomics classifier allows a non-invasive prediction of 

the intracranial BRAF V600E mutation status in patients with melanoma brain 

metastases with high diagnostic performance. 
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KEY POINTS 

- MRI radiomics predicts non-invasively the intracranial BRAF V600E mutation status 

in patients with melanoma brain metastases with high diagnostic performance 

- The developed radiomics model based on routinely acquired structural MRI can be 

easily implemented in clinical routine 

- Considering the heterogeneity between the BRAF mutation status of the 

extracranial primary tumor and a metastatic brain lesion in melanoma patients, the 

developed model is of value for personalized treatment decisions, e.g., the use of 

BRAF inhibitors 
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IMPORTANCE OF THE STUDY 

The BRAF V600E mutation in patients with melanoma brain metastases is an important 

prerequisite for response to targeted therapies using BRAF inhibitors. Of note, the 

intracranial efficacy of these therapies may be limited by heterogeneity in terms of the 

BRAF mutation status between the extracranial primary tumor and the metastatic brain 

lesion in this group of patients. Furthermore, most patients with melanoma brain 

metastases are considered for radiosurgery as first-line treatment option, so that tissue 

samples are usually not available. The present study shows the usefulness of a 

machine learning model based on the combination of clinical parameters and MRI 

radiomics features to predict non-invasively the intracranial BRAF mutation status in 

patients with melanoma brain metastases with high diagnostic accuracy. 
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INTRODUCTION  

About 40-60% of patients with stage IV melanoma develop brain metastases in the 

course of the disease1. Nearly 50% of patients with melanoma brain metastases harbor 

one of various mutations of the BRAF gene (v-Raf murine sarcoma viral oncogene 

homolog B1) 2,3. The most frequent mutation V600E, present in about 70% of cases, 

comprise the substitution of valine for glutamic acid 4. Importantly, a BRAF mutation is 

a prerequisite for an effective response to targeted therapies using BRAF inhibitors 

such as vemurafenib and dabrafenib. These agents have shown considerable 

intracranial response rates in clinical trials with a significant improvement of overall and 

progression-free survival 5-8. Nevertheless, recent studies indicated a heterogeneity 

between the BRAF mutation status of the extracranial primary melanoma and 

melanoma brain metastases in up to 26% of patients, resulting in inefficacy of BRAF 

inhibitor targeted therapy in wild-type tumors 2,9,10. Thus, knowledge of the BRAF 

mutation status of the brain metastases may substantially support treatment decisions. 

 

The mutation status of melanoma brain metastases is usually defined through genetic 

analysis of tissue samples after tumor resection or biopsy. In most patients, melanoma 

brain metastases are treated at first-line by radiosurgery 8. Therefore, tissue samples 

are usually available only for patients with clinically symptomatic and space-occupying 

brain metastases in whom surgical removal is indicated. Nevertheless, according to 

the most recent European guidelines of the EANO and ESMO for diagnosis, treatment, 

and follow-up of melanoma brain metastases, determination of the BRAF mutation 

status is highly recommended for all patients 8. Thus, methods for a reliable non-

invasive assessment of the intracranial BRAF mutation status are of high clinical 

relevance, especially in patients suitable for stereotactic radiosurgery without the need 

for further surgical interventions or for the use of BRAF inhibitors for the treatment of 
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brain metastases relapse after radiosurgery as first-line treatment option. Radiomics, 

a method from the broad field of Artificial Intelligence aims at the large-scale extraction 

of image features from routinely acquired imaging data, that are not accessible through 

conventional image analysis. Following radiomics feature extraction, prognostic or 

predictive mathematical models are developed to support clinical decision-making 11,12. 

Currently, radiomics is increasingly investigated in Neuro-Oncology and demonstrated 

its potential for the histomolecular characterization of brain metastases 13-16.  

 

Here, we evaluated the potential of MRI radiomics for the non-invasive diagnosis of 

the BRAF V600E mutation status in patients with melanoma brain metastases. 
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PATIENTS AND METHODS 

Ethics statement 

The present study was conducted according to the guidelines of the declaration of 

Helsinki, and the retrospective analysis of data was approved by the Ethics 

Committees of the University Hospital Cologne, Germany, (approval number 19-1686) 

and the University Hospital Regensburg, Germany (approval number 20-1799-101). 

 

Patients 

From 2010 to 2020, we retrospectively identified patients with melanoma brain 

metastases from the Brain Tumor Centers of the University Hospitals Cologne and 

Regensburg, Germany, who (i) had no previous local treatment, (ii) underwent 

preoperative contrast-enhanced MRI, (iii) had a known intrametastatic BRAF V600E 

mutation status based on the genetic analysis of tissue samples after surgical brain 

metastasis resection.  

 

Clinical data were obtained from an electronic database and patient files. We recorded 

gender, age, previous systemic therapy, time from first diagnosis to the development 

of brain metastases, number, volume, and localization of brain metastases, clinical 

symptoms, preoperative Karnofsky performance status, and the BRAF V600E 

mutation status of the extracranial tumor and the brain metastases.  

 

Genetic analysis of BRAF V600E mutation status 

DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) specimens of 

patients with morphologically and immunohistochemically (vimentin+, S100 protein+, 

Melan-A+, HMB45+) proven brain metastases of systemic malignant melanoma. The 
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BRAF V600E mutation status was analyzed in the University Hospital Cologne as 

follows:  

 

DNA was subjected to polymerase chain reaction (PCR) for hot spot (V600E, K, R) 

mutation of the BRAF gene (BRAF-F: 5’-AAGACCTCACAGTAAAAATAGGTG-3’; 

BRAF-R: 5’-Biotin-AATCAGTGGAAAAATAGCCTCAAT-3’; 134 bp from 140753245 to 

140753378, according to NC_000007.14 (GRCh38.p13) under 

https://www.ncbi.nlm.nih.gov/nuccore). PCR products were analyzed by QIAxcel 

Advanced system (Qiagen, Hilden, Germany) followed by pyrosequencing (BRAF-S: 

5’-GTGATTTTGGTCTAGCTAC-3’).  

 

The BRAF V600E mutation status was analyzed in the University Hospital Regensburg 

following the approach described by Kriegl and colleagues 17. In brief, 40 ng DNA were 

amplified by PCR using the following primer sequences: 5’-

TGAAGACCTCACAGTAAAAATAGG-3’ and 5`-Biotin-

TCCAGACAACTGTTCAAACTG-3’. As sequencing primer, 5’-

GTAAAAATAGGTGATTTTGG-3’ was used. 

 

In both centers, sequencing results were analyzed by the PyroMark Q24 software 

(Qiagen, Hilden, Germany) according to the instructions of the provider. 

 

MR imaging 

Structural MR imaging used in this study was limited to T1-weighted contrast-

enhanced, and T2-weighted sequences only. Preoperative structural T1-weighted non-

contrast and FLAIR MR images were not available for the radiomics analysis. 
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Image preprocessing and definition of tumor mask 

Image preprocessing was performed using the FSL toolbox version 5.0 (FMRIB 

Software Library, http://www.fmrib.ox.ac.uk/fsl) 18 the MIC-DKFZ HD-BET brain 

extraction tool (https://github.com/MIC-DKFZ/HD-BET) 19, the Advanced Normalization 

Tools ANTS version 2.1 (http://stnava.github.io/ANTs) 20, and the open source image 

analysis software ITK SNAP version 3.6 (http://www.itksnap.org/) 21 following the 

conversion of all images to NifTI format (dcm2niix, 

https://github.com/rordenlab/dcm2niix) 22. After rigid co-registration of the T2-weighted 

MRI to the T1-weighted contrast-enhanced MRI using FSL-FLIRT (FMRIB's Linear 

Image Registration Tool) and brain extraction using HD-BET, a nonparametric 

normalization algorithm for the removal of low frequency intensity nonuniformities (bias 

field) in the MR images was performed using N4ITK 23. MR image intensities were Z-

Score normalized according to current recommendations 24 prior to manual tumor 

segmentation based on the volume of contrast enhancement using ITK-SNAP. Missing 

voxels and small holes in the resulting tumor masks were augmented by the FSLmaths 

hole-filling algorithm.   

 

Radiomics feature extraction  

Radiomics feature extraction was performed using the open-source package 

PyRadiomics (version 3.0.1) in Python (https://pyradiomics.readthedocs.io/en/latest/) 

25. Prior to extraction, images were resampled to 1 mm3 voxel size and discretized to 

a bin width of 0.1. Three basic groups of radiomics features were extracted, including 

16 shape, 19 first order and 75 second order features subdivided by the underlying 

gray level matrices, i.e., gray level co-occurrence matrix (GLCM), gray level 

dependence matrix (GLDM), gray level run length matrix (GLRLM), gray level size zone 

matrix (GLSZM), and neighboring gray tone difference matrix (NGTDM). Features 
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were calculated on the original image and after applying wavelet and Laplacian of 

Gaussian (LoG) filter methods, which resulted in a total of 1,316 radiomics features 

per imaging sequence.  

 

Test-retest analysis and feature selection  

To avoid the usage of non-robust radiomics features, we followed the conceptual 

framework proposed by Zwanenburg and colleagues 26. We used the image 

perturbation method chain translation, noise, and volume adaption to produce an 

augmented version of the original image. In a test-retest approach, radiomics features 

were calculated and compared for both images. Repeatability between features was 

evaluated by the intraclass correlation coefficient (ICC). Features were considered 

repeatable if the lower and upper limits of the ICC 95% confidence interval were in the 

range of 0.91 to 1.00. The ICC analysis was implemented in Python (Pingouin, version 

0.3.9) 27. Following this analysis, the 100 radiomics features with highest mutual 

information were selected for model training. 

 

Model training and testing 

Prior to training different classification models, the training set (patient group 1, 

University Hospital Cologne) was split into a training and a validation set. All radiomics 

features were standardized by subtracting the mean and dividing by the standard 

deviation of the training data. A 10-fold stratified cross-validation (70% training, 30% 

validation) was performed with subsequent feature selection based on their averaged 

feature importance rankings across all subsets of the data. This process was repeated 

until the average validation metric did not improve further and the model with the best 

performing features and hyperparameters was retrained on the complete training data 

set. Finally, the best performing model in the training data was applied to the external 
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test data set (patient group 2, University Hospital Regensburg). Importantly, the final 

model testing was performed blinded to the BRAF mutation status. Afterwards, the 

classification results were transferred to the University Hospital Regensburg and the 

diagnostic performance of the classifier was assessed fully independent from the 

researchers involved in model generation. The radiomics workflow is presented in 

Figure 1. 

 

The prediction of the BRAF mutation status was derived from three individual models. 

Model 1 was based on the patient age only. Model 2 and Model 3 were trained on a 

combination of the patient age and radiomics features. Whereas Model 2 included 

radiomics features from contrast-enhanced T1-weighted MRI only, Model 3 included 

features from both contrast-enhanced T1- and T2-weighted MR images. All processing 

steps were implemented in Python (sklearn, version 0.24.1).  

 

Feature map extraction 

In order to evaluate the local radiomics feature expression and to visualize potential 

feature patterns for tumor classification, we adapted the procedure by Vuong and 

colleagues 28. For image patches of 3x3x3 voxels, local radiomics features were 

calculated on the volume of interest.  

 

Statistical analysis  

Descriptive statistics are provided as mean and standard deviation or median and 

range. The diagnostic performance of each classifier was evaluated by receiver 

operating characteristics analysis. To avoid experimental bias, the statistical analysis 

of the external test data (patient group, University Hospital Regensburg) was 

performed by an independent researcher not involved in the model generation. 
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Significant differences between features were tested using the two-tailed Student's t-

test, with previous confirmation of a normal distribution by the Shapiro-Wilk test. P-

values of 0.05 or less were considered statistically significant. Statistical analyses were 

implemented in Python (Pingouin, version 0.3.9) 27. 
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RESULTS 

Patient and clinical characteristics  

Fifty-nine patients from two University Hospitals were retrospectively identified, thereof 

45 patients from the Brain Tumor Center of the University Hospital Cologne, Germany 

(mean age, 60 ± 12 years; age range, 39 - 83 years; 21 females, 24 males). One 

patient received the corticosteroid dexamethasone prior to preoperative MRI (dosage, 

4 mg/day for 12 days). Twenty-three patients had melanoma brain metastases 

harboring a BRAF mutation, 22 patients were BRAF wild-type. Six patients (13%) 

showed a discrepancy of the BRAF mutation status between the extracranial tumor 

and the melanoma brain metastasis. 

 

Fourteen patients with surgically resected melanoma brain metastases were identified 

at the Brain Tumor Center of the University Hospital Regensburg, Germany (mean 

age, 59 ± 11 years; age range, 42 - 76 years; 6 females, 8 males). Eight patients had 

melanoma brain metastases harboring a BRAF mutation, 6 patients had a BRAF wild-

type. Discordance of extra- and intracranial BRAF mutation status was present in 2 

patients (14%). 

 

Patients with a BRAF mutation were significantly younger than those with a BRAF wild-

type (53 ± 10 vs. 65 ± 9 years; p<0.001). No statistically significant differences were 

found in patients’ sex, anatomical location, tumor volume, presence of intratumoral 

hemorrhage or tumor cysts of the brain metastases. Patient characteristics are 

summarized in Table 1. 
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Classification results 

Three individual models were compared in their ability to predict the BRAF mutation 

status in patients with melanoma brain metastases.  Model 1 classified patients below 

the age of 59 as BRAF mutated with an area under the receiver operating characteristic 

curve (AUC) of 0.80 (sensitivity, 72%; specificity, 78%; accuracy, 78%) in the training 

set and with an AUC of 0.58 (sensitivity, 50%; specificity, 63%; accuracy, 57%) in the 

test set.  

 

The best classification of the BRAF mutation status was achieved by combining clinical 

and radiomics features calculated on contrast-enhanced T1-weighted MRI using a 

linear support vector machine classifier (model 2). Five radiomics features and the 

patients' age were included in the final model. The model achieved an average AUC 

of 0.87 ± 0.09 in the stratified 10-fold cross validation of the training data (mean 

sensitivity, 79 ± 15%; mean specificity, 91 ± 10%, mean accuracy, 85 ± 10%). In the 

test data, the model yielded an AUC of 0.92 (sensitivity, 83%; specificity, 88%; 

accuracy, 86%). 

 

Integration of radiomics features calculated from T2-weighted MRI in the training 

process resulted in a linear support vector machine classifier based on seven 

radiomics features and the patients' age (model 3). The training performance resulted 

in a mean AUC of 0.92 ± 0.80 (mean sensitivity, 86 ± 13%; mean specificity, 93 ± 10%; 

mean accuracy, 89 ± 8%.). The classifier achieved an AUC of 0.81 (sensitivity, 100%; 

specificity, 75%; accuracy, 88) in the test data. Due to missing MRI data, only eight 

patients were included in the test data set of model 3. 

 

The results are summarized in Figure 2 and Table 2.  
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Feature importance 

The feature importance expressed as support vector machine coefficients for model 2 

and model 3 are shown in Figure 3. In both models, the patient age contributed the 

most to the decision function of the classifier. Interestingly, the second most 

contributing feature in model 2, the inverse difference moment of the grey level co-

occurrence matrix (GLCM) calculated on Laplacian of Gaussian filtered contrast-

enhanced T1-weighted MRI was significantly different between BRAF wild-type and 

BRAF mutant patients in the test set (p<0.05). Representative local feature expression 

differences between BRAF wildtype and BRAF mutant melanoma brain metastases 

are shown in Figure 4. 
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DISCUSSION 

One main finding of the present study is that a machine learning model based on a 

combination of clinical parameters and MRI radiomics features predicts the intracranial 

BRAF V600E mutation status in patients with melanoma brain metastases with a high 

diagnostic accuracy, i.e., an AUC of 0.92. Furthermore, the developed model was 

evaluated in an albeit small, but independent test data set from another brain tumor 

center. Importantly, the validation of its high diagnostic performance in this data set 

indicates the capability of providing reliable results regardless of the used scanners 

and imaging parameters. Since the radiomics model is based on routinely acquired 

structural MRI and the developed model can be applied fully automated on a 

conventional computer in a few minutes, the approach seems to be applicable in 

clinical routine. 

 

The usefulness of radiomics for the prediction of genomic alterations such as a BRAF 

mutation in patients with melanoma brain metastases has already been reported 

earlier by Shofty and colleagues 16. In that study and contrast to the present results, 

the developed model achieved an AUC of 0.78 for the prediction of an intracranial 

BRAF mutation. Additionally, besides the lower prediction performance, the developed 

classifier was not evaluated in an external test dataset. Moreover, to reduce the risk of 

overfitting in accordance with published recommendations, we limited the number of 

radiomics features to six 29,30.   

 

A reliable method for the non-invasive determination of the intrametastatic BRAF 

status is of particular clinical relevance. Importantly, recent findings indicate a 

discrepancy between the BRAF mutation status of the extracranial primary tumor and 

brain metastases in about 15% of melanoma patients, resulting in a lack of intracranial 
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response to BRAF inhibitors in wild-type brain metastases 9,10. In our study, 14% of 

patients showed a discrepancy of the BRAF V600E mutation between the extracranial 

primary tumor and the metastatic brain lesions. Furthermore, in most patients with 

melanoma brain metastases, radiosurgery is considered as first-line treatment option, 

so that tissue samples are usually not available, and the intrametastatic BRAF mutation 

status remains unknown. In addition, the BRAF mutation status might change over 

time 10, leading to uncertainty even in patients from whom tissue samples are available 

for genetic analysis. Thus, the non-invasive evaluation of the intrametastatic BRAF 

mutation status appears to be beneficial for treatment decisions, i.e., the use of BRAF 

inhibitors. 

 

Another main finding of our study is that the addition of MRI radiomics features to the 

clinical parameter age increased the diagnostic performance by more than 30%. Thus, 

radiomics features may be considered an additional source of diagnostic information 

in order to improve brain tumor diagnostics, especially in combination with already 

available clinical parameters. This observation is also in line with results of previous 

studies. For example, radiomics features derived from PET using the radiolabeled 

amino acid O-(2-[18F]fluoroethyl)-L-tyrosine combined with MRI radiomics suggested a 

high clinical value for the differentiation of radiation-induced changes from brain 

metastases relapse. Importantly, the combined analysis revealed a higher diagnostic 

accuracy than either modality alone 31. Furthermore, Mouraviev and co-workers proved 

the feasibility of radiomics for the prediction of local control after radiosurgery of brain 

metastases 32. In that study, the combination of clinical parameters with radiomics 

features resulted in an almost 20% higher AUC compared to clinical parameters alone. 
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Except the evaluation of radiomics for various clinical applications (e.g., refinement of 

diagnostics in brain tumor patients), the evaluation of the biological meaning of 

radiomics features is also currently under investigation 33. In our study, we observed 

that the radiomics feature inverse difference moment of the GLCM was of considerable 

importance for the prediction of the BRAF mutation status. This feature reflects local 

image homogeneity and showed high values for BRAF wild-type and low values for 

BRAF mutant melanoma brain metastases. Interestingly, this finding is also supported 

by the visual impression that BRAF mutant melanoma brain metastases show a more 

heterogenous pattern of contrast enhancement compared to the BRAF wild-type 

metastases (Figure 4). Nevertheless, further efforts are needed for a deeper 

understanding of radiomics features and machine learning models. This might be key 

for a successful translation and acceptance of radiomics into clinical practice. To obtain 

this goal, correlation of imaging features with spatially correlated tissue samples 

including extensive neuropathological work-up is necessary. 

 

To validate our encouraging initial results, further modifications of the study design are 

needed. The developed radiomics model is based on structural MRI and does not 

include advanced MRI sequences such as T2* or diffusion-weighted imaging. Future 

studies should therefore investigate whether the model performance can be further 

increased by including advanced MRI sequences or other imaging modalities such as 

PET. Another point is that a potential influence of a systemic therapy (e.g., combined 

checkpoint blockade using ipilimumab and nivolumab) for the treatment of the primary 

extracranial melanoma on the radiological features of brain metastases cannot be 

ruled out, although only patients with newly diagnosed melanoma brain metastases 

were investigated in the present study. Nevertheless, the non-invasive prediction of 



 22 

the BRAF mutation status using the innovative radiogenomics approach is an 

important clinical application. 

 

In addition, our results should be confirmed prospectively with a higher number of 

patients enrolled from multiple centers. That would considerably help to increase the 

generally low availability of melanoma brain metastases tissue for BRAF genotyping.  

 

In summary, our study suggests that the developed radiomics classifier is of clinical 

value for a non-invasive prediction of the intracranial BRAF V600E mutation status in 

patients with melanoma brain metastases. In addition, the radiomics model is based 

on routinely acquired and easily accessible structural MRI, which facilitates the 

implementation in clinical routine. Considering the reported heterogeneity between 

intra- and extracranial BRAF mutation status, the radiomics model may add valuable 

information for personalized treatment decision-making, i.e., the use of BRAF 

inhibitors.  
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FIGURES & TABLES 

 

Figure 1: Radiomics workflow. a) The dataset was divided in a training set (University 

Hospital Cologne) and test set (University Hospital Regensburg). For both, radiomics 

features were extracted. b) Repeatability was calculated for features calculated on the 

original image and an augmented version of the image. The 100 radiomics features 

with highest mutual information were selected from the subset of repeatable features. 

c) Ten-fold stratified shuffle split cross validation was performed until the validation 

accuracy did not further improve. d) Using the optimal model parameters and best 

performing features, the model was retrained on the complete training data. In a last 

step the model was applied to the test set.  

CV: cross validation; SVM: support vector machine; T1-CE: contrast-enhanced T1-

weigted MRI; T2: T2-weighted MRI 
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Figure 2: Receiver operating characteristic curves of the developed classifiers in the 

training and the test dataset.  

AUC: area under the receiver operating characteristic curve; CV: cross validation; 

FPR: false-positive rate; SD: standard deviation; T1-CE: contrast-enhanced T1-

weighted MRI; T2: T2-weighted MRI; TPR: true-positive rate 

 

 
 
 
 
 
 



 31 

 
Figure 3: Feature importance expressed as support vector machine coefficients for 

model 2 (age + radiomics features from contrast-enhanced T1-weighted MRI) (top) and 

model 3 (age + radiomics features from contrast-enhanced T1- and T2-weighted MRI) 

(bottom). In both models, patients' age was the most important feature for the 

prediction of the BRAF mutation status.  

glcm: gray level co-occurrence matrix; ngtdm: neighboring gray tone difference matrix; 

LoG: Laplacian of Gaussian; SVM: support vector machine; T1-CE: contrast-enhanced 

T1-weighted MRI; T2: T2-weighted MRI 
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Figure 4: Visualization of different patterns of contrast enhancement in association 

with the BRAF mutation status. Melanoma brain metastases harboring a BRAF 

mutation showed a more heterogenous uptake of contrast enhancement (right), 

whereas BRAF wild-type melanoma brain metastases showed a more homogenous 

contrast enhancement (left). This visual impression is quantified by the radiomics 

feature inverse difference moment of the grey level co-occurrence matrix (GLCM-IDM). 

This feature reflects the local image homogeneity and showed statistically significant 

higher values for BRAF wild-type melanoma brain metastases compared to BRAF 

mutant tumors (Box plot, bottom). 

LoG: Laplacian of Gaussian image filter; ROI: region-of-interest 
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Table 1: Patient characteristics. 

 Training Set – Cologne  (n=45) Test Set – Regensburg (n=14) 

 Total BRAF   
wild-type 

BRAF 
mutant Total BRAF    

wild-type 
BRAF 
mutant 

Number of patients 45 23 22 14 6 8 
Sex (female/male) 21/24 11/12 10/12 6/8 4/2 2/6 

Age at surgery 
(years) (mean ± sd) 60 ± 12 60 ± 12 59 ± 12 59 ± 11 67 ± 8 53 ± 8 

Number of patients 
with 

 

singular 26 14 12 5 4 1 
2-3 10 5 5 3 1 2 

more than 3 
metastases 9 4 5 6 1 5 

Tumor volume (ml) 
(mean ± sd) 19.0 ± 13.3 19.8 ± 11.7 18.1 ± 14.9 14.2 ± 14.3 20.3 ± 16.3 6.0 ± 4.5 

Intrametastatic 
hemorrhage 26 13 13 3 1 2 

Cystic tumor 7 2 5 3 3 0 
Karnofsky 

performance score 
preoperative 

(median) (range) 

90 
(20-100) 

90 
(20-100) 

90 
(30-100) 

90 
(20-100) 

80 
(20-100) 

90 
(30-100) 

Time to detection of 
brain metastases 

(months) (mean ± sd) 
57 ± 69 56 ± 70 50 ± 63 64 ± 76 25 ± 27 98 ± 87 

Location       
- temporal left/right 5/4 2/3 3/1 1/2 0/1 1/1 
- parietal left/right 3/4 1/2 2/2 3/1 2/0 1/1 
- frontal left/right 5/13 2/6 3/7 0/1 0/0 0/1 

- cerebellar left/right 5/3 5/1 0/2 1/1 0/1 1/0 
- central left/right 1/0 1/0 0/0 0/0 0/0 0/0 

- occipital left/right 1/1 0/0 1/1 0/1 0/1 0/0 
Previous systemic 

therapy              
(multiple possible): 

 

- Chemotherapy 5 4 11 5 3 2 
- Immunotherapy 22 10 12 13 6 7 

- Targeted therapy 17 7 10 8 0 8 
- Interferon therapy 16 7 9 3 2 1 
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Table 2: Top - Results from 10-fold stratified cross validation of model 2 (age + 

radiomics features from contrast-enhanced T1-weighted MRI) and model 3 (age + 

radiomics features from contrast-enhanced T1- and T2-weighted MRI) using the data 

set from the University Hospital Cologne. Bottom - Test results of model 2 and model 

3 using the independent data set from the University Hospital Regensburg.  

 

Acc: accuracy; AUC: area under the receiver operating characteristic curve; CV: cross 

validation; SD: standard deviation; Sens: sensitivity; Spec: specificity; T1-CE: contrast-

enhanced T1-weighted MRI; T2: T2-weighted MRI 

TRAINING 
 

Model 2 (T1-CE, age) Model 3 (T1-CE, T2, age) 
CV fold Acc [%] AUC Sens [%] Spec [%] Acc [%] AUC Sens [%] Spec [%] 

1 100.0 1.00 100.0 100.0 92.9 0.96 85.7 100.0 
2 71.4 0.78 71.4 71.4 78.6 0.78 57.1 100.0 
3 85.7 0.84 71.4 100.0 92.9 0.94 100.0 85.7 
4 85.7 0.92 85.7 85.7 92.9 0.98 85.7 100.0 
5 71.4 0.76 57.1 85.7 78.6 0.86 85.7 71.4 
6 78.6 0.88 71.4 85.7 92.9 0.98 85.7 100.0 
7 92.9 0.96 85.7 100.0 100.0 1.00 100 100.0 
8 78.6 0.76 57.1 100.0 85.7 0.86 85.7 85.7 
9 85.7 0.86 85.7 85.7 78.6 0.84 71.4 85.7 
10 100.0 1.00 100.0 100.0 100.0 1.00 100.0 100.0 

Mean ± 
SD 

85.0 ± 
10.3 

0.87 ± 
0.09 

78.5 ± 
15.4 

91.4 ± 
0.09 

83.5 ± 
10.1 

0.92 ± 
0.08 

85.7 ± 
13.4 

92.8 ± 
10.1 

TEST 

 Model 2 (T1-CE, age) Model 3 (T1-CE, T2, age) 
Acc [%] AUC Sens [%] Spec [%] Acc [%] AUC Sens [%] Spec [%] 

86.0 0.92 83.0 88.0 88.0 0.81 100 75.0 
 

 


