000906100 001__ 906100
000906100 005__ 20240712113101.0
000906100 0247_ $$2doi$$a10.1002/admi.202101734
000906100 0247_ $$2Handle$$a2128/30929
000906100 0247_ $$2altmetric$$aaltmetric:121919695
000906100 0247_ $$2WOS$$aWOS:000749645800001
000906100 037__ $$aFZJ-2022-01222
000906100 082__ $$a600
000906100 1001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b0$$eCorresponding author
000906100 245__ $$aModeling the Solid Electrolyte Interphase: Machine Learning as a Game Changer?
000906100 260__ $$aWeinheim$$bWiley-VCH$$c2022
000906100 3367_ $$2DRIVER$$aarticle
000906100 3367_ $$2DataCite$$aOutput Types/Journal article
000906100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648468742_16573
000906100 3367_ $$2BibTeX$$aARTICLE
000906100 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906100 3367_ $$00$$2EndNote$$aJournal Article
000906100 520__ $$aThe solid electrolyte interphase (SEI) is a complex passivation layer that forms in situ on many battery electrodes such as lithium-intercalated graphite or lithium metal anodes. Its essential function is to prevent the electrolyte from continuous electrochemical degradation, while simultaneously allowing ions to pass through, thus constituting an electronically insulating, but ionically conducting material. Its properties crucially affect the overall performance and aging of a battery cell. Despite decades of intense research, understanding the SEI's precise formation mechanism, structure, composition, and evolution remains a conundrum. State-of-the-art computational modeling techniques are powerful tools to gain additional insights, although confronted with a trade-off between accuracy and accessible time- and length scales. In this review, it is discussed how recent advances in data-driven models, especially the development of fast and accurate surrogate simulators and deep generative models, can work with physics-based and physics-informed approaches to enable the next generation of breakthroughs in this field. Machine learning-enhanced multiscale models can provide new pathways to inverse the design of interphases with desired properties.
000906100 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000906100 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906100 7001_ $$00000-0001-7187-3501$$aAppiah, Williams Agyei$$b1
000906100 7001_ $$0P:(DE-Juel1)187475$$aMabrouk, Youssef$$b2$$ufzj
000906100 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b3
000906100 7001_ $$00000-0002-1484-0284$$aVegge, Tejs$$b4$$eCorresponding author
000906100 7001_ $$00000-0003-3198-5116$$aBhowmik, Arghya$$b5$$eCorresponding author
000906100 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202101734$$gp. 2101734 -$$n8$$p2101734 -$$tAdvanced materials interfaces$$v9$$x2196-7350$$y2022
000906100 8564_ $$uhttps://juser.fz-juelich.de/record/906100/files/Adv%20Materials%20Inter%20-%202022%20-%20Diddens%20-%20Modeling%20the%20Solid%20Electrolyte%20Interphase%20Machine%20Learning%20as%20a%20Game%20Changer.pdf$$yOpenAccess
000906100 8767_ $$d2022-11-09$$eHybrid-OA$$jDEAL
000906100 909CO $$ooai:juser.fz-juelich.de:906100$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000906100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b0$$kFZJ
000906100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187475$$aForschungszentrum Jülich$$b2$$kFZJ
000906100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b3$$kFZJ
000906100 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000906100 9141_ $$y2022
000906100 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906100 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000906100 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906100 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906100 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2021$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000906100 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER INTERFACES : 2021$$d2022-11-12
000906100 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000906100 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906100 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906100 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000906100 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000906100 9801_ $$aFullTexts
000906100 980__ $$ajournal
000906100 980__ $$aVDB
000906100 980__ $$aUNRESTRICTED
000906100 980__ $$aI:(DE-Juel1)IEK-12-20141217
000906100 980__ $$aAPC
000906100 981__ $$aI:(DE-Juel1)IMD-4-20141217