001     906100
005     20240712113101.0
024 7 _ |a 10.1002/admi.202101734
|2 doi
024 7 _ |a 2128/30929
|2 Handle
024 7 _ |a altmetric:121919695
|2 altmetric
024 7 _ |a WOS:000749645800001
|2 WOS
037 _ _ |a FZJ-2022-01222
082 _ _ |a 600
100 1 _ |a Diddens, Diddo
|0 P:(DE-Juel1)169877
|b 0
|e Corresponding author
245 _ _ |a Modeling the Solid Electrolyte Interphase: Machine Learning as a Game Changer?
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648468742_16573
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The solid electrolyte interphase (SEI) is a complex passivation layer that forms in situ on many battery electrodes such as lithium-intercalated graphite or lithium metal anodes. Its essential function is to prevent the electrolyte from continuous electrochemical degradation, while simultaneously allowing ions to pass through, thus constituting an electronically insulating, but ionically conducting material. Its properties crucially affect the overall performance and aging of a battery cell. Despite decades of intense research, understanding the SEI's precise formation mechanism, structure, composition, and evolution remains a conundrum. State-of-the-art computational modeling techniques are powerful tools to gain additional insights, although confronted with a trade-off between accuracy and accessible time- and length scales. In this review, it is discussed how recent advances in data-driven models, especially the development of fast and accurate surrogate simulators and deep generative models, can work with physics-based and physics-informed approaches to enable the next generation of breakthroughs in this field. Machine learning-enhanced multiscale models can provide new pathways to inverse the design of interphases with desired properties.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Appiah, Williams Agyei
|0 0000-0001-7187-3501
|b 1
700 1 _ |a Mabrouk, Youssef
|0 P:(DE-Juel1)187475
|b 2
|u fzj
700 1 _ |a Heuer, Andreas
|0 P:(DE-Juel1)176646
|b 3
700 1 _ |a Vegge, Tejs
|0 0000-0002-1484-0284
|b 4
|e Corresponding author
700 1 _ |a Bhowmik, Arghya
|0 0000-0003-3198-5116
|b 5
|e Corresponding author
773 _ _ |a 10.1002/admi.202101734
|g p. 2101734 -
|0 PERI:(DE-600)2750376-8
|n 8
|p 2101734 -
|t Advanced materials interfaces
|v 9
|y 2022
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/906100/files/Adv%20Materials%20Inter%20-%202022%20-%20Diddens%20-%20Modeling%20the%20Solid%20Electrolyte%20Interphase%20Machine%20Learning%20as%20a%20Game%20Changer.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906100
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176646
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV MATER INTERFACES : 2021
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21