000906110 001__ 906110
000906110 005__ 20230522125348.0
000906110 0247_ $$2doi$$a10.1016/j.nanoen.2020.105484
000906110 0247_ $$2ISSN$$a2211-2855
000906110 0247_ $$2ISSN$$a2211-3282
000906110 0247_ $$2Handle$$a2128/31114
000906110 0247_ $$2WOS$$aWOS:000620507900001
000906110 037__ $$aFZJ-2022-01231
000906110 041__ $$aEnglish
000906110 082__ $$a660
000906110 1001_ $$0P:(DE-HGF)0$$aWang, Jiangjing$$b0
000906110 245__ $$aEnhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects
000906110 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000906110 3367_ $$2DRIVER$$aarticle
000906110 3367_ $$2DataCite$$aOutput Types/Journal article
000906110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651669018_28693
000906110 3367_ $$2BibTeX$$aARTICLE
000906110 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906110 3367_ $$00$$2EndNote$$aJournal Article
000906110 520__ $$aLattice defects are typically used to tailor the thermoelectric properties of materials. It is desirable that such defects improve the electrical conductivity, while, at the same time, reduce the thermal conductivity, for an overall improvement on the thermoelectric properties of materials. Here, we report on an extended defect in Sb2Te3 consisting of swapped bilayers with chemical intermixing of Sb and Te atoms, which can be generated and effectively manipulated in polycrystalline samples through synthetic methods and thermal treatments. The swapped bilayers bridge the spatial gaps between the Sb2Te3 quintuple-layer blocks, enhancing the charge carrier mobility and thus the electrical conductivity. These defects also result in a reduced lattice thermal conductivity through suppressing phonon transport. These synergistic effects contribute together to an improved thermoelectric quality factor and an enhanced figure of merit (zT) value in Sb2Te3.
000906110 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000906110 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000906110 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906110 7001_ $$0P:(DE-HGF)0$$aZhou, Chongjian$$b1
000906110 7001_ $$0P:(DE-HGF)0$$aYu, Yuan$$b2
000906110 7001_ $$0P:(DE-HGF)0$$aZhou, Yuxing$$b3
000906110 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b4
000906110 7001_ $$0P:(DE-HGF)0$$aGe, Bangzhi$$b5
000906110 7001_ $$0P:(DE-HGF)0$$aCheng, Yudong$$b6
000906110 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b7
000906110 7001_ $$0P:(DE-HGF)0$$aMazzarello, Riccardo$$b8
000906110 7001_ $$0P:(DE-HGF)0$$aShi, Zhongqi$$b9$$eCorresponding author
000906110 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b10$$eCorresponding author
000906110 7001_ $$0P:(DE-HGF)0$$aZhang, Wei$$b11$$eCorresponding author
000906110 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2020.105484$$gVol. 79, p. 105484 -$$p105484 -$$tNano energy$$v79$$x2211-2855$$y2021
000906110 8564_ $$uhttps://juser.fz-juelich.de/record/906110/files/Enhancing%20thermoelectric.pdf$$yPublished on 2020-10-14. Available in OpenAccess from 2022-10-14.
000906110 909CO $$ooai:juser.fz-juelich.de:906110$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b7$$kFZJ
000906110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ
000906110 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000906110 9141_ $$y2022
000906110 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000906110 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000906110 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNANO ENERGY : 2019$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2019$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000906110 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906110 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000906110 920__ $$lyes
000906110 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000906110 980__ $$ajournal
000906110 980__ $$aVDB
000906110 980__ $$aUNRESTRICTED
000906110 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000906110 9801_ $$aFullTexts