| Hauptseite > Publikationsdatenbank > Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects > print |
| 001 | 906110 | ||
| 005 | 20230522125348.0 | ||
| 024 | 7 | _ | |a 10.1016/j.nanoen.2020.105484 |2 doi |
| 024 | 7 | _ | |a 2211-2855 |2 ISSN |
| 024 | 7 | _ | |a 2211-3282 |2 ISSN |
| 024 | 7 | _ | |a 2128/31114 |2 Handle |
| 024 | 7 | _ | |a WOS:000620507900001 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-01231 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Wang, Jiangjing |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1651669018_28693 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Lattice defects are typically used to tailor the thermoelectric properties of materials. It is desirable that such defects improve the electrical conductivity, while, at the same time, reduce the thermal conductivity, for an overall improvement on the thermoelectric properties of materials. Here, we report on an extended defect in Sb2Te3 consisting of swapped bilayers with chemical intermixing of Sb and Te atoms, which can be generated and effectively manipulated in polycrystalline samples through synthetic methods and thermal treatments. The swapped bilayers bridge the spatial gaps between the Sb2Te3 quintuple-layer blocks, enhancing the charge carrier mobility and thus the electrical conductivity. These defects also result in a reduced lattice thermal conductivity through suppressing phonon transport. These synergistic effects contribute together to an improved thermoelectric quality factor and an enhanced figure of merit (zT) value in Sb2Te3. |
| 536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |x 0 |f POF IV |
| 536 | _ | _ | |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) |0 G:(GEPRIS)167917811 |c 167917811 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Zhou, Chongjian |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Yu, Yuan |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Zhou, Yuxing |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Lu, Lu |0 P:(DE-Juel1)161232 |b 4 |
| 700 | 1 | _ | |a Ge, Bangzhi |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Cheng, Yudong |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Jia, Chun-Lin |0 P:(DE-Juel1)130736 |b 7 |
| 700 | 1 | _ | |a Mazzarello, Riccardo |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Shi, Zhongqi |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
| 700 | 1 | _ | |a Wuttig, Matthias |0 P:(DE-Juel1)176716 |b 10 |e Corresponding author |
| 700 | 1 | _ | |a Zhang, Wei |0 P:(DE-HGF)0 |b 11 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.nanoen.2020.105484 |g Vol. 79, p. 105484 - |0 PERI:(DE-600)2648700-7 |p 105484 - |t Nano energy |v 79 |y 2021 |x 2211-2855 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/906110/files/Enhancing%20thermoelectric.pdf |y Published on 2020-10-14. Available in OpenAccess from 2022-10-14. |
| 909 | C | O | |o oai:juser.fz-juelich.de:906110 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130736 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)176716 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NANO ENERGY : 2019 |d 2021-01-28 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO ENERGY : 2019 |d 2021-01-28 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|