001     906110
005     20230522125348.0
024 7 _ |a 10.1016/j.nanoen.2020.105484
|2 doi
024 7 _ |a 2211-2855
|2 ISSN
024 7 _ |a 2211-3282
|2 ISSN
024 7 _ |a 2128/31114
|2 Handle
024 7 _ |a WOS:000620507900001
|2 WOS
037 _ _ |a FZJ-2022-01231
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wang, Jiangjing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651669018_28693
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lattice defects are typically used to tailor the thermoelectric properties of materials. It is desirable that such defects improve the electrical conductivity, while, at the same time, reduce the thermal conductivity, for an overall improvement on the thermoelectric properties of materials. Here, we report on an extended defect in Sb2Te3 consisting of swapped bilayers with chemical intermixing of Sb and Te atoms, which can be generated and effectively manipulated in polycrystalline samples through synthetic methods and thermal treatments. The swapped bilayers bridge the spatial gaps between the Sb2Te3 quintuple-layer blocks, enhancing the charge carrier mobility and thus the electrical conductivity. These defects also result in a reduced lattice thermal conductivity through suppressing phonon transport. These synergistic effects contribute together to an improved thermoelectric quality factor and an enhanced figure of merit (zT) value in Sb2Te3.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|x 0
|f POF IV
536 _ _ |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)
|0 G:(GEPRIS)167917811
|c 167917811
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhou, Chongjian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yu, Yuan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhou, Yuxing
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 4
700 1 _ |a Ge, Bangzhi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cheng, Yudong
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 7
700 1 _ |a Mazzarello, Riccardo
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shi, Zhongqi
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 10
|e Corresponding author
700 1 _ |a Zhang, Wei
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.nanoen.2020.105484
|g Vol. 79, p. 105484 -
|0 PERI:(DE-600)2648700-7
|p 105484 -
|t Nano energy
|v 79
|y 2021
|x 2211-2855
856 4 _ |u https://juser.fz-juelich.de/record/906110/files/Enhancing%20thermoelectric.pdf
|y Published on 2020-10-14. Available in OpenAccess from 2022-10-14.
909 C O |o oai:juser.fz-juelich.de:906110
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NANO ENERGY : 2019
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO ENERGY : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21