000906128 001__ 906128
000906128 005__ 20220226143433.0
000906128 037__ $$aFZJ-2022-01244
000906128 1001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b0$$eCorresponding author
000906128 1112_ $$aGroup Seminar$$cMartin-Luther-Universität Halle-Wittenberg$$d2022-02-22 - $$wGermany
000906128 245__ $$aSpin-orbit torques from first principles: Collinear magnets, noncollinear magnets, temperaturedependence$$f2022-02-02 - 
000906128 260__ $$c2022
000906128 3367_ $$033$$2EndNote$$aConference Paper
000906128 3367_ $$2DataCite$$aOther
000906128 3367_ $$2BibTeX$$aINPROCEEDINGS
000906128 3367_ $$2ORCID$$aLECTURE_SPEECH
000906128 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1645798908_31247$$xInvited
000906128 3367_ $$2DINI$$aOther
000906128 520__ $$aSpin-orbit torques (SOTs) in magnetic bilayers composed of a 5d transition metal layer and aferromagnetic layer can serve as a competitive alternative to the Slonczewski spin-transfer torque inspin-valves and magnetic tunnel junctions in order to realize MRAM devices. Based on our first -principles approach to compute the SOT, we will first discuss the SOT in Co/Pt and Mn/W magneticbilayers [1,2]. A particular focus will be on the role of the spin-currents that contribute to these torques.We will show how the understanding of the SOT in these ferromagnetic bilayers may be transferred tothe SOT in antiferromagnetic bilayers such as FeRh/W[3]. A necessity to obtain the SOT is thebreaking of space inversion symmetry. While magnetic bilayers such as Co/Pt and Mn/W exhibitstructural breaking of inversion symmetry, half Heusler compounds such as PtMnSb display brokeninversion symmetry in the bulk. We will show that the SOT in half Heuslers may reach magnitudescomparable to magnetic bilayers and is very sensitive to strain [4]. Next, we will discuss that thecombination of structural inversion asymmetry and noncollinear magnetism leads to additionalmechanisms of the SOT. In particular, we will discuss Co/Cu/Co trilayers, where spin currentsgenerated by in-plane current at one FM/NM interface can be used to switch the other FM [5]. Despitethe absence of heavy metals with strong spin-orbit coupling the SOTs in Co/Cu/Co trilayers are sizable.The SOT in the top FM can be tuned by the magnetization direction of the bottom FM. We will showthat in noncollinear magnets SOT and current-induced Dzyaloshinskii-Moriya interaction areintertwined, such that both effects need to be considered at the same time in order to obtain results thatsatisfy the Onsager-reciprocity relations [6]. Finally, we will discuss the temperature dependence ofSOTs found in experiments, which is often not yet well understood by the theoretical models. We willdiscuss our formalism development for the calculation of the magnonic contribution to the SOT andpresent results for this magnonic SOT in the Rashba model [7].[1] F. Freimuth et al., PRB 92, 064415 (2015)[2] F. Freimuth et al., PRB 90, 174423 (2014)[3] F. Freimuth et al., https://arxiv.org/abs/2102.10598[4] F. Freimuth et al., PRB 103, 224414 (2021)[5] F. Freimuth et al., PRB 98, 024419 (2018)[6] F. Freimuth et al., PRB 102, 245411 (2020)[7] F. Freimuth et al., PRB 104, 094434 (2021)
000906128 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906128 909CO $$ooai:juser.fz-juelich.de:906128$$pVDB
000906128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b0$$kFZJ
000906128 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906128 9141_ $$y2022
000906128 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906128 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906128 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906128 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000906128 980__ $$atalk
000906128 980__ $$aVDB
000906128 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906128 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906128 980__ $$aI:(DE-82)080009_20140620
000906128 980__ $$aI:(DE-82)080012_20140620
000906128 980__ $$aUNRESTRICTED