000906151 001__ 906151
000906151 005__ 20230123101855.0
000906151 0247_ $$2doi$$a10.1002/admi.202100915
000906151 0247_ $$2Handle$$a2128/31321
000906151 0247_ $$2altmetric$$aaltmetric:110628252
000906151 0247_ $$2WOS$$aWOS:000678192200001
000906151 037__ $$aFZJ-2022-01264
000906151 082__ $$a600
000906151 1001_ $$0P:(DE-HGF)0$$aMilano, Gianluca$$b0
000906151 245__ $$aStructure‐Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films
000906151 260__ $$aWeinheim$$bWiley-VCH$$c2021
000906151 3367_ $$2DRIVER$$aarticle
000906151 3367_ $$2DataCite$$aOutput Types/Journal article
000906151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655208781_19649
000906151 3367_ $$2BibTeX$$aARTICLE
000906151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906151 3367_ $$00$$2EndNote$$aJournal Article
000906151 520__ $$aResistive switching mechanisms underlying memristive devices are widely investigated, and the importance as well as influence of ambient conditions on the electrical performances of memristive cells are already recognized. However, detailed understanding of the ambient effect on the switching mechanism still remains a challenge. This work presents an experimental investigation on the effect of moisture on resistive switching performances of ZnO-based electrochemical metallization memory cells. ZnO thin films are grown by chemical vapor deposition (CVD) and radio frequency sputtering. Water molecules are observed to influence electrical resistance of ZnO by affecting the electronic conduction mechanism and by providing additional species for ionic conduction. By influencing dissolution and migration of ionic species underlying resistive switching events, moisture is reported to tune resistive switching parameters. In particular, the presence of H2O is responsible for a decrease of the forming and SET voltages and an increase of the ON/OFF resistance ratio in both CVD and sputtered films. The effect of moisture on resistive switching performance is found to be more pronounced in case of sputtered films where the reduced grain size is responsible for an increased adsorption of water molecules and an increased amount of possible pathways for ion migration.
000906151 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000906151 588__ $$aDataset connected to DataCite
000906151 7001_ $$0P:(DE-HGF)0$$aLuebben, Michael$$b1
000906151 7001_ $$0P:(DE-HGF)0$$aLaurenti, Marco$$b2
000906151 7001_ $$0P:(DE-HGF)0$$aBoarino, Luca$$b3
000906151 7001_ $$00000-0002-4703-7949$$aRicciardi, Carlo$$b4$$eCorresponding author
000906151 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b5$$eCorresponding author$$ufzj
000906151 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202100915$$gVol. 8, no. 16, p. 2100915 -$$n16$$p2100915 -$$tAdvanced materials interfaces$$v8$$x2196-7350$$y2021
000906151 8564_ $$uhttps://juser.fz-juelich.de/record/906151/files/Adv%20Materials%20Inter%20-%202021%20-%20Milano%20-%20Structure%E2%80%90Dependent%20Influence%20of%20Moisture%20on%20Resistive%20Switching%20Behavior%20of%20ZnO%20Thin.pdf$$yOpenAccess
000906151 909CO $$ooai:juser.fz-juelich.de:906151$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b5$$kFZJ
000906151 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000906151 9141_ $$y2022
000906151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000906151 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2019$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000906151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906151 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000906151 920__ $$lyes
000906151 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000906151 980__ $$ajournal
000906151 980__ $$aVDB
000906151 980__ $$aUNRESTRICTED
000906151 980__ $$aI:(DE-Juel1)PGI-7-20110106
000906151 9801_ $$aFullTexts