001     906151
005     20230123101855.0
024 7 _ |a 10.1002/admi.202100915
|2 doi
024 7 _ |a 2128/31321
|2 Handle
024 7 _ |a altmetric:110628252
|2 altmetric
024 7 _ |a WOS:000678192200001
|2 WOS
037 _ _ |a FZJ-2022-01264
082 _ _ |a 600
100 1 _ |a Milano, Gianluca
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structure‐Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655208781_19649
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resistive switching mechanisms underlying memristive devices are widely investigated, and the importance as well as influence of ambient conditions on the electrical performances of memristive cells are already recognized. However, detailed understanding of the ambient effect on the switching mechanism still remains a challenge. This work presents an experimental investigation on the effect of moisture on resistive switching performances of ZnO-based electrochemical metallization memory cells. ZnO thin films are grown by chemical vapor deposition (CVD) and radio frequency sputtering. Water molecules are observed to influence electrical resistance of ZnO by affecting the electronic conduction mechanism and by providing additional species for ionic conduction. By influencing dissolution and migration of ionic species underlying resistive switching events, moisture is reported to tune resistive switching parameters. In particular, the presence of H2O is responsible for a decrease of the forming and SET voltages and an increase of the ON/OFF resistance ratio in both CVD and sputtered films. The effect of moisture on resistive switching performance is found to be more pronounced in case of sputtered films where the reduced grain size is responsible for an increased adsorption of water molecules and an increased amount of possible pathways for ion migration.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Luebben, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laurenti, Marco
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Boarino, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ricciardi, Carlo
|0 0000-0002-4703-7949
|b 4
|e Corresponding author
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/admi.202100915
|g Vol. 8, no. 16, p. 2100915 -
|0 PERI:(DE-600)2750376-8
|n 16
|p 2100915 -
|t Advanced materials interfaces
|v 8
|y 2021
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/906151/files/Adv%20Materials%20Inter%20-%202021%20-%20Milano%20-%20Structure%E2%80%90Dependent%20Influence%20of%20Moisture%20on%20Resistive%20Switching%20Behavior%20of%20ZnO%20Thin.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906151
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21