000906165 001__ 906165
000906165 005__ 20231116095329.0
000906165 0247_ $$2doi$$a10.1088/2633-4356/ac4a75
000906165 0247_ $$2Handle$$a2128/30669
000906165 0247_ $$2altmetric$$aaltmetric:121541854
000906165 0247_ $$2WOS$$aWOS:001084798100001
000906165 037__ $$aFZJ-2022-01265
000906165 082__ $$a621.3
000906165 1001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b0$$eCorresponding author
000906165 245__ $$aUsing materials for quasiparticle engineering
000906165 260__ $$aBristol$$bIOP Publishing$$c2022
000906165 3367_ $$2DRIVER$$aarticle
000906165 3367_ $$2DataCite$$aOutput Types/Journal article
000906165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644582891_29494
000906165 3367_ $$2BibTeX$$aARTICLE
000906165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906165 3367_ $$00$$2EndNote$$aJournal Article
000906165 520__ $$aThe fundamental excitations in superconductors—Bogoliubov quasiparticles—can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.
000906165 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000906165 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906165 7001_ $$00000-0003-0984-1829$$aPekola, J. P.$$b1
000906165 773__ $$0PERI:(DE-600)3063953-0$$a10.1088/2633-4356/ac4a75$$gVol. 2, no. 1, p. 013001 -$$n1$$p013001 -$$tMaterials for quantum technology$$v2$$x2633-4356$$y2022
000906165 8564_ $$uhttps://juser.fz-juelich.de/record/906165/files/Catelani_2022_Mater._Quantum_Technol._2_013001.pdf$$yOpenAccess
000906165 909CO $$ooai:juser.fz-juelich.de:906165$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b0$$kFZJ
000906165 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000906165 9141_ $$y2022
000906165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906165 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906165 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-03-08T16:45:32Z
000906165 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-03-08T16:45:32Z
000906165 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-03-08T16:45:32Z
000906165 920__ $$lyes
000906165 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000906165 980__ $$ajournal
000906165 980__ $$aVDB
000906165 980__ $$aUNRESTRICTED
000906165 980__ $$aI:(DE-Juel1)PGI-11-20170113
000906165 9801_ $$aFullTexts