000906165 001__ 906165 000906165 005__ 20231116095329.0 000906165 0247_ $$2doi$$a10.1088/2633-4356/ac4a75 000906165 0247_ $$2Handle$$a2128/30669 000906165 0247_ $$2altmetric$$aaltmetric:121541854 000906165 0247_ $$2WOS$$aWOS:001084798100001 000906165 037__ $$aFZJ-2022-01265 000906165 082__ $$a621.3 000906165 1001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b0$$eCorresponding author 000906165 245__ $$aUsing materials for quasiparticle engineering 000906165 260__ $$aBristol$$bIOP Publishing$$c2022 000906165 3367_ $$2DRIVER$$aarticle 000906165 3367_ $$2DataCite$$aOutput Types/Journal article 000906165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644582891_29494 000906165 3367_ $$2BibTeX$$aARTICLE 000906165 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000906165 3367_ $$00$$2EndNote$$aJournal Article 000906165 520__ $$aThe fundamental excitations in superconductors—Bogoliubov quasiparticles—can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions. 000906165 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000906165 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000906165 7001_ $$00000-0003-0984-1829$$aPekola, J. P.$$b1 000906165 773__ $$0PERI:(DE-600)3063953-0$$a10.1088/2633-4356/ac4a75$$gVol. 2, no. 1, p. 013001 -$$n1$$p013001 -$$tMaterials for quantum technology$$v2$$x2633-4356$$y2022 000906165 8564_ $$uhttps://juser.fz-juelich.de/record/906165/files/Catelani_2022_Mater._Quantum_Technol._2_013001.pdf$$yOpenAccess 000906165 909CO $$ooai:juser.fz-juelich.de:906165$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000906165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b0$$kFZJ 000906165 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000906165 9141_ $$y2022 000906165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906165 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000906165 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-03-08T16:45:32Z 000906165 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-03-08T16:45:32Z 000906165 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-03-08T16:45:32Z 000906165 920__ $$lyes 000906165 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0 000906165 980__ $$ajournal 000906165 980__ $$aVDB 000906165 980__ $$aUNRESTRICTED 000906165 980__ $$aI:(DE-Juel1)PGI-11-20170113 000906165 9801_ $$aFullTexts