001     906165
005     20231116095329.0
024 7 _ |a 10.1088/2633-4356/ac4a75
|2 doi
024 7 _ |a 2128/30669
|2 Handle
024 7 _ |a altmetric:121541854
|2 altmetric
024 7 _ |a WOS:001084798100001
|2 WOS
037 _ _ |a FZJ-2022-01265
082 _ _ |a 621.3
100 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 0
|e Corresponding author
245 _ _ |a Using materials for quasiparticle engineering
260 _ _ |a Bristol
|c 2022
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1644582891_29494
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The fundamental excitations in superconductors—Bogoliubov quasiparticles—can be either a resource or a liability in superconducting devices: they are what enables photon detection in microwave kinetic inductance detectors, but they are a source of errors in qubits and electron pumps. To improve operation of the latter devices, ways to mitigate quasiparticle effects have been devised; in particular, combining different materials quasiparticles can be trapped where they do no harm and their generation can be impeded. We review recent developments in these mitigation efforts and discuss open questions.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pekola, J. P.
|0 0000-0003-0984-1829
|b 1
773 _ _ |a 10.1088/2633-4356/ac4a75
|g Vol. 2, no. 1, p. 013001 -
|0 PERI:(DE-600)3063953-0
|n 1
|p 013001 -
|t Materials for quantum technology
|v 2
|y 2022
|x 2633-4356
856 4 _ |u https://juser.fz-juelich.de/record/906165/files/Catelani_2022_Mater._Quantum_Technol._2_013001.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906165
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-03-08T16:45:32Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-03-08T16:45:32Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-03-08T16:45:32Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21