Home > Publications database > B1 field map synthesis with generative deep learning used in the design of parallel-transmit RF pulses for ultra-high field MRI > print |
001 | 906178 | ||
005 | 20230217124246.0 | ||
024 | 7 | _ | |a 10.1016/j.zemedi.2021.12.003 |2 doi |
024 | 7 | _ | |a 0040-5973 |2 ISSN |
024 | 7 | _ | |a 0939-3889 |2 ISSN |
024 | 7 | _ | |a 1876-4436 |2 ISSN |
024 | 7 | _ | |a 2128/31907 |2 Handle |
024 | 7 | _ | |a WOS:000878590000008 |2 WOS |
037 | _ | _ | |a FZJ-2022-01278 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Eberhardt, Boris |0 P:(DE-Juel1)166296 |b 0 |
245 | _ | _ | |a B1 field map synthesis with generative deep learning used in the design of parallel-transmit RF pulses for ultra-high field MRI |
260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier, Urban & Fischer |
264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-08-01 |
264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-08-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1664264235_9370 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Spoke trajectory parallel transmit (pTX) excitation in ultra-high field MRI enablesinhomogeneities arising from the shortened RF wavelength in biological tissue to be mitigated. To this end, current RF excitation pulse design algorithms either employ the acquisition of field maps with subsequent non-linear optimization or a universal approach applying robust pre-computed pulses. We suggest and evaluate an intermediate method that uses a subset of acquired field maps combined with generative machine learning models to reduce the pulse calibration time while offering more tailored excitation than robust pulses (RP).The possibility of employing image-to-image translation and semantic image synthesis machine learning models based on generative adversarial networks (GANs) to deduce the missing field maps is examined. Additionally, an RF pulse design that employs a predictive machine learning model to find solutions for the non-linear (two-spokes) pulse design problem is investigated.As a proof of concept, we present simulation results obtained with the suggested machine learning approaches that were trained on a limited data-set, acquired in vivo. The achieved excitation homogeneity based on a subset of half of themaps acquired in the calibration scans and half of the maps synthesized with GANs is comparable with state of the art pulse design methods when using the full set of calibration data while halving the total calibration time. By employing RP dictionaries or machine-learning RF pulse predictions, the total calibration time can be reduced significantly as these methods take only seconds or milliseconds per slice, respectively. |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 0 |
542 | _ | _ | |i 2022-08-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2021-12-28 |2 Crossref |u http://creativecommons.org/licenses/by-nc-nd/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Poser, Benedikt A. |0 0000-0001-8190-4367 |b 1 |
700 | 1 | _ | |a Shah, N. Jon |0 P:(DE-Juel1)131794 |b 2 |u fzj |
700 | 1 | _ | |a Felder, Jörg |0 P:(DE-Juel1)131761 |b 3 |e Corresponding author |
773 | 1 | 8 | |a 10.1016/j.zemedi.2021.12.003 |b Elsevier BV |d 2022-08-01 |n 3 |p 334-345 |3 journal-article |2 Crossref |t Zeitschrift für Medizinische Physik |v 32 |y 2022 |x 0939-3889 |
773 | _ | _ | |a 10.1016/j.zemedi.2021.12.003 |g p. S0939388921001161 |0 PERI:(DE-600)2231492-1 |n 3 |p 334-345 |t Zeitschrift für medizinische Physik |v 32 |y 2022 |x 0939-3889 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906178/files/1-s2.0-S0939388921001161-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906178 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)166296 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0001-8190-4367 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131761 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b Z MED PHYS : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB1046 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)VDB1046 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1097/RMR.0000000000000204 |9 -- missing cx lookup -- |1 Deniz |p 159 - |2 Crossref |t Top Magn Reson Imaging |v 28 |y 2019 |
999 | C | 5 | |a 10.1002/mrm.20708 |9 -- missing cx lookup -- |1 Van de Moortele |p 1503 - |2 Crossref |t Magn Reson Med |v 54 |y 2005 |
999 | C | 5 | |a 10.1002/mrm.21073 |9 -- missing cx lookup -- |1 Vaughan |p 1274 - |2 Crossref |t Magn Reson Med |v 56 |y 2006 |
999 | C | 5 | |a 10.1002/mrm.10353 |9 -- missing cx lookup -- |1 Katscher |p 144 - |2 Crossref |t Magn Reson Med |v 49 |y 2003 |
999 | C | 5 | |a 10.1002/mrm.20011 |9 -- missing cx lookup -- |1 Zhu |p 775 - |2 Crossref |t Magn Reson Med |v 51 |y 2004 |
999 | C | 5 | |a 10.1002/mrm.20840 |9 -- missing cx lookup -- |1 Saekho |p 719 - |2 Crossref |t Magn Reson Med |v 55 |y 2006 |
999 | C | 5 | |a 10.1002/mrm.26512 |9 -- missing cx lookup -- |1 Grissom |p 1352 - |2 Crossref |t Magn Reson Med |v 78 |y 2017 |
999 | C | 5 | |a 10.1002/mrm.21513 |9 -- missing cx lookup -- |1 Setsompop |p 908 - |2 Crossref |t Magn Reson Med |v 59 |y 2008 |
999 | C | 5 | |a 10.1002/mrm.28820 |1 Paez |y 2021 |2 Crossref |t Magn Reson Med |9 -- missing cx lookup -- |
999 | C | 5 | |a 10.1016/j.jmr.2015.03.013 |9 -- missing cx lookup -- |1 Dupas |p 59 - |2 Crossref |t J Magn Reson |v 255 |y 2015 |
999 | C | 5 | |a 10.1109/TMI.2020.3013982 |9 -- missing cx lookup -- |1 Eberhardt |p 4225 - |2 Crossref |t IEEE Trans Med Imaging |v 39 |y 2020 |
999 | C | 5 | |a 10.1002/mrm.24800 |9 -- missing cx lookup -- |1 Guerin |p 1446 - |2 Crossref |t Magn Reson Med |v 71 |y 2014 |
999 | C | 5 | |a 10.1002/mrm.26491 |9 -- missing cx lookup -- |1 Gras |p 1009 - |2 Crossref |t Magn Reson Med |v 78 |y 2017 |
999 | C | 5 | |a 10.1002/mrm.26148 |9 -- missing cx lookup -- |1 Gras |p 635 - |2 Crossref |t Magn Reson Med |v 77 |y 2017 |
999 | C | 5 | |a 10.1002/mrm.27001 |9 -- missing cx lookup -- |1 Gras |p 53 - |2 Crossref |t Magn Reson Med |v 80 |y 2018 |
999 | C | 5 | |a 10.1002/mrm.28643 |9 -- missing cx lookup -- |1 Herrler |p 3140 - |2 Crossref |t Magn Reson Med |v 85 |y 2021 |
999 | C | 5 | |a 10.1038/nature14539 |9 -- missing cx lookup -- |1 LeCun |p 436 - |2 Crossref |t Nature |v 521 |y 2015 |
999 | C | 5 | |1 Ng |y 2002 |2 Crossref |o Ng 2002 |
999 | C | 5 | |a 10.1109/TPAMI.2019.2910523 |9 -- missing cx lookup -- |1 Lathuilière |p 2065 - |2 Crossref |t IEEE Trans Pattern Anal Mach Intell |v 42 |y 2020 |
999 | C | 5 | |a 10.1561/2200000056 |9 -- missing cx lookup -- |1 Kingma |p 307 - |2 Crossref |t Found Trends® Mach Learn |v 12 |y 2019 |
999 | C | 5 | |1 Dupont |y 2021 |2 Crossref |o Dupont 2021 |
999 | C | 5 | |1 Kingma |y 2014 |2 Crossref |o Kingma 2014 |
999 | C | 5 | |1 Goodfellow |y 2014 |2 Crossref |o Goodfellow 2014 |
999 | C | 5 | |a 10.1002/mrm.27192 |9 -- missing cx lookup -- |1 Ianni |p 1871 - |2 Crossref |t Magn Reson Med |v 80 |y 2018 |
999 | C | 5 | |a 10.1002/mrm.22978 |9 -- missing cx lookup -- |1 Cloos |p 72 - |2 Crossref |t Magn Reson Med |v 67 |y 2012 |
999 | C | 5 | |a 10.1002/mrm.27870 |1 Tomi-Tricot |y 2019 |2 Crossref |t Magn Reson Med |9 -- missing cx lookup -- |
999 | C | 5 | |a 10.1002/mrm.28667 |9 -- missing cx lookup -- |1 Vinding |p 3308 - |2 Crossref |t Magn Reson Med |v 85 |y 2021 |
999 | C | 5 | |1 Tavaf |y 2021 |2 Crossref |o Tavaf 2021 |
999 | C | 5 | |1 Zbontar |y 2019 |2 Crossref |o Zbontar 2019 |
999 | C | 5 | |a 10.1002/mrm.28819 |9 -- missing cx lookup -- |1 Lan |p 1718 - |2 Crossref |t Magn Reson Med |v 86 |y 2021 |
999 | C | 5 | |a 10.1002/mrm.27948 |9 -- missing cx lookup -- |1 Meliadò |p 695 - |2 Crossref |t Magn Reson Med |v 83 |y 2020 |
999 | C | 5 | |a 10.1109/TMI.2020.3022968 |9 -- missing cx lookup -- |1 Lei |p 105 - |2 Crossref |t IEEE Trans Med Imaging |v 40 |y 2021 |
999 | C | 5 | |a 10.1002/mrm.28590 |9 -- missing cx lookup -- |1 Abbasi-Rad |p 2462 - |2 Crossref |t Magn Reson Med |v 85 |y 2021 |
999 | C | 5 | |a 10.1002/mrm.25689 |9 -- missing cx lookup -- |1 Wu |p 1444 - |2 Crossref |t Magn Reson Med |v 75 |y 2016 |
999 | C | 5 | |1 Wang |y 2018 |2 Crossref |o Wang 2018 |
999 | C | 5 | |1 Park |y 2019 |2 Crossref |o Park 2019 |
999 | C | 5 | |1 Kassakian |y 2006 |2 Crossref |o Kassakian 2006 |
999 | C | 5 | |1 Isola |y 2018 |2 Crossref |o Isola 2018 |
999 | C | 5 | |1 Ronneberger |y 2015 |2 Crossref |o Ronneberger 2015 |
999 | C | 5 | |a 10.1002/mrm.24158 |9 -- missing cx lookup -- |1 Nehrke |p 1517 - |2 Crossref |t Magn Reson Med |v 68 |y 2012 |
999 | C | 5 | |a 10.1016/j.jmr.2014.06.006 |9 -- missing cx lookup -- |1 Tse |p 125 - |2 Crossref |t J Magn Reson |v 245 |y 2014 |
999 | C | 5 | |a 10.1002/mrm.1910360421 |9 -- missing cx lookup -- |1 Kanayamay |p 637 - |2 Crossref |t Magn Reson Med |v 36 |y 1996 |
999 | C | 5 | |1 NVlabs |y 2020 |2 Crossref |o NVlabs 2020 |
999 | C | 5 | |1 He |y 2016 |2 Crossref |o He 2016 |
999 | C | 5 | |1 Paszke |y 2019 |2 Crossref |o Paszke 2019 |
999 | C | 5 | |1 Zhao |y 2019 |2 Crossref |o Zhao 2019 |
999 | C | 5 | |a 10.1002/mrm.20978 |9 -- missing cx lookup -- |1 Grissom |p 620 - |2 Crossref |t Magn Reson Med |v 56 |y 2006 |
999 | C | 5 | |a 10.1002/mrm.24726 |9 -- missing cx lookup -- |1 Shajan |p 870 - |2 Crossref |t Magn Reson Med |v 71 |y 2014 |
999 | C | 5 | |a 10.1007/s10334-016-0543-6 |9 -- missing cx lookup -- |1 Tse |p 333 - |2 Crossref |t Magn Reson Mater Phys Biol Med |v 29 |y 2016 |
999 | C | 5 | |a 10.1002/mrm.26501 |9 -- missing cx lookup -- |1 Tse |p 1050 - |2 Crossref |t Magn Reson Med |v 78 |y 2017 |
999 | C | 5 | |a 10.1002/mrm.25512 |9 -- missing cx lookup -- |1 Schmitter |p 1291 - |2 Crossref |t Magn Reson Med |v 74 |y 2015 |
999 | C | 5 | |a 10.1109/TMI.2013.2295465 |9 -- missing cx lookup -- |1 Hoyos-Idrobo |p 739 - |2 Crossref |t IEEE Trans Med Imaging |v 33 |y 2014 |
999 | C | 5 | |1 Hansen |y 2015 |2 Crossref |o Hansen 2015 |
999 | C | 5 | |a 10.1186/s40537-019-0197-0 |9 -- missing cx lookup -- |1 Shorten |p 60 - |2 Crossref |t J. Big Data |v 6 |y 2019 |
999 | C | 5 | |a 10.1002/mrm.26086 |9 -- missing cx lookup -- |1 Vinding |p 374 - |2 Crossref |t Magn Reson Med |v 77 |y 2017 |
999 | C | 5 | |a 10.1002/mrm.24311 |9 -- missing cx lookup -- |1 Yoon |p 278 - |2 Crossref |t Magn Reson Med |v 68 |y 2012 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|