000906180 001__ 906180
000906180 005__ 20220930130338.0
000906180 0247_ $$2Handle$$a2128/30972
000906180 0247_ $$2URN$$aurn:nbn:de:0001-2022040647
000906180 020__ $$a978-3-95806-612-0
000906180 037__ $$aFZJ-2022-01279
000906180 041__ $$aEnglish
000906180 1001_ $$0P:(DE-Juel1)165349$$aWohlers, Karen$$b0$$eCorresponding author$$gfemale$$ufzj
000906180 245__ $$aStrain development of $\textit{Gluconobacter oxydans}$ and $\textit{Pseudomonas putida}$ for production of the sweetener 5-ketofructose$$f2018-01-01 - 2022-01-21
000906180 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2022
000906180 300__ $$a118 S.
000906180 3367_ $$2DataCite$$aOutput Types/Dissertation
000906180 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000906180 3367_ $$2ORCID$$aDISSERTATION
000906180 3367_ $$2BibTeX$$aPHDTHESIS
000906180 3367_ $$02$$2EndNote$$aThesis
000906180 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1648717585_30678
000906180 3367_ $$2DRIVER$$adoctoralThesis
000906180 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v252
000906180 502__ $$aHeinrich-Heine-Universität Düsseldorf, Diss., 2021$$bDissertation$$cHeinrich-Heine-Univesität Düsseldorf$$d2021
000906180 500__ $$aIBT-1
000906180 520__ $$aConsumption of added sugar is a health threat since it can cause obesity and type 2 diabetes. Consequently, there is an increasing demand for sugar substitutes. Available sweeteners, however, have different drawbacks resulting in a need for alternative sugar substitutes. The natural metabolite 5-ketofructose (5-KF) is a promising sweetener candidate. It is not metabolized by the human body and probably not metabolized by the human gut microbiome while having a comparable sweet taste as fructose. 5-KF can be produced from fructose via oxidation by the membrane-bound fructose dehydrogenase (Fdh) of $\textit{Gluconbacter japonicus}$, encoded by the $\textit{fdhSCL}$ genes. Recent studies showed the production of the sweetener with heterologous strains of the industrially relevant acetic acid bacterium $\textit{Gluconobacter oxydans}$. As $\textit{G. oxydans}$ possesses no Fdh, plasmid-based $\textit{fdhSCL}$ expression was applied in previous studies. For production of a food additive, however, antibiotic-free production is desirable. Aiming at plasmid- and antibiotic-free 5-KF production, in this study the $\textit{fdhSCL}$ genes were integrated into the chromosome of engineered $\textit{G. oxydans}$ IK003.1. Four different genomic integration sites were selected, including three intergenic regions and one gene replacement, to compare the effects of the genomic environment. The four integration strains were successfully constructed, and all allowed functional expression of the $\textit{fdhSCL}$ genes with minor differences in 5-KF production. However, the efficiency and velocity of 5-KF production was lower compared to plasmid-based $\textit{fdhSCL}$ expression. To improve the plasmid-free production of the sweetener, the two best integration sites were combined in a double integration strain, $\textit{G. oxydans}$ IK003.1::$\textit{fdhSCL}^{2}$} containing two chromosomal $\textit{fdhSCL}$ copies. This strain showed accelerated 5-KF production, approaching that of the strain with plasmid-based $\textit{fdhSCL}$ expression. Methods for genetic engineering and expression systems for $\textit{G. oxydans}$ are still limited. $\textit{G. oxydans}$ needs complex medium components for good growth and has a low biomass yield. Hence, in the second part of this study, the well-established organism $\textit{Pseudomonas putida}$ was selected as alternative 5-KF production host. Tn7-based chromosomal integration of the $\textit{fdhSCL}$ genes enabled $\textit{P. putida}$ to produce 5-KF from fructose in mineral salts medium. In a batch fermentation with 150 g/L fructose, a product concentration of 129 ± 5 g/L 5-KF was reached. Overall, shake flask experiments, bioreactor cultivations and whole-cell biotransformations demonstrated a competitive ability of $\textit{P. putida}$::$\textit{fdhSCL}$ to produce 5-KF when compared to a $\textit{G. oxydans fdhSCL}$ integration strain. The substrate spectrum of $\textit{P. putida}$::$\textit{fdhSCL}$ was expanded by plasmid-based expression of $\textit{inv1417}$, encoding a periplasmic invertase of $\textit{G. japonicus}$. Inv1417 enabled 5-KF production from sucrose as cheaper substrate at rates comparable to productionfrom fructose.
000906180 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000906180 8564_ $$uhttps://juser.fz-juelich.de/record/906180/files/Schluesseltech_252.pdf$$yOpenAccess
000906180 909CO $$ooai:juser.fz-juelich.de:906180$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000906180 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906180 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906180 9141_ $$y2022
000906180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165349$$aForschungszentrum Jülich$$b0$$kFZJ
000906180 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000906180 920__ $$lyes
000906180 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000906180 980__ $$aphd
000906180 980__ $$aVDB
000906180 980__ $$aUNRESTRICTED
000906180 980__ $$abook
000906180 980__ $$aI:(DE-Juel1)IBG-1-20101118
000906180 9801_ $$aFullTexts