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Abstract

The dynamics of grassland ecosystems are highly complex due to multifaceted interactions among their soil,
water, and vegetation components. Precise simulations of grassland productivity therefore rely on accurately
estimating a variety of parameters that characterize different processes of these systems. This study applied
three calibration schemes — a Single-Objective (SO-SUFI2), a Multi-Objective Pareto (MO-Pareto), and, a
novel Uncertainty-Based Multi-Objective (MO-SUFI2)— to estimate the parameters of MONICA (Model
for Nitrogen and Carbon Simulation) agro-ecosystem model in grassland ecosystems across Germany. The
MO-Pareto model is based on a traditional Pareto optimality concept, while the MO-SUFI2 optimizes
multiple target variables considering their level of prediction uncertainty. We used measurements of leaf
area index, aboveground biomass, and soil moisture from experimental data at five sites with different
intensities of cutting regimes (from two to five cutting events per season) to evaluate model performance.
Both MO-Pareto and MO-SUFI2 outperformed SO-SUFI2 during calibration and validation. The
comparison of the two MO approaches shows that they do not necessarily conflict with each other, but MO-
SUFI2 provides complementary information for better estimations of model parameter uncertainty. We used
the obtained parameter ranges to simulate grassland productivity across Germany under different cutting
regimes and quantified the uncertainty associated with estimated productivity across regions. The results
showed higher uncertainty in intensively managed grasslands compared to extensively managed grasslands,
partially due to a lack of high-resolution input information concerning cutting dates. Furthermore, the
additional information on the quantified uncertainty provided by our proposed MO-SUFI2 method adds
deeper insights on confidence levels of estimated productivity. Benefiting from additional management data
collected at high resolution and ground measurements on the composition of grassland species mixtures

appear to be promising solutions to reduce uncertainty and increase model reliability.

Keywords: Intensively managed grasslands; extensively managed grasslands; Grassland productivity;

Pareto optimality.
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1. Introduction

Grasslands occupy 40.5% of the world’s total terrestrial area (White et al., 2000) and contribute greatly to
terrestrial biodiversity and carbon storage, which accounts for approximately 28-37% of the global soil
organic carbon pool (Lal, 2004). A recent study in tree-sparse grasslands such as California has
demonstrated that grasslands are more reliable carbon sinks than forest and wetland ecosystems with respect
to climate change (Dass et al., 2018). Economically less profitable than arable crops (Wimberly et al., 2017),
permanent grasslands are usually cultivated where arable cropping is limited by, e.g. steep slopes, the risk
of frequent flooding, adverse climatic or hydraulic conditions (Lei et al., 2016), and poor soils. In Germany,
managed grassland areas cover more than 28% of agricultural land (Griffiths et al., 2020; Statistisches
Bundesamt, 2019) and represent remarkable values for fodder production, biodiversity conservation,
recreation, and ecosystem services. In fact, about 50% of plant species in Germany depend on grassland
habitats (BFN, 2014). Grasslands also contribute to the replenishment of groundwater resources, as they
allow more water to percolate into deeper soil zones compared to forests or cropland (von Wilpert et al.,
2016). Permanent grasslands (in the form of meadows or pastures), which comprise more than 90% of
Germany’s grassland areas, have been under pressure from land use changes since at least 1990. Since then,
the total area has been reduced by 12% (Statistisches Bundesamt, 2019) as a result of land use changes in
favor of intensive agriculture. At the same time, low-productivity grasslands on marginal sites have been
abandoned for economic reasons, threatening some rare plant communities (BFN, 2014). The various types
of grassland in Germany nevertheless still provide a large range of ecosystem services and biodiversity, if
managed appropriately. Therefore, preservation of grassland as an important part of agricultural land use in
Germany remains of crucial importance, and a better understanding of their environmental functioning is
required to manage these areas more sustainably, especially in the context of global warming.

The dynamics of grassland ecosystems are highly complex, due to the multifaceted interactions among their
soil, water, and vegetation components. Equipped with understanding of these interrelations, it is easier to
design grassland management strategies that do not interfere with the provision of ecosystem services. Over
the last few decades, various process-based agro-ecosystem models have been developed to simulate plant-
soil-water relations and to explore the productivity and functioning of grassland systems. Such model
application studies have focused on different aspects, such as the spatial distribution of grassland
productivity (Chang et al., 2015b; Zheng et al., 2020), the impacts of environmental factors and climate
change on grassland productivity (Gomara et al., 2020; Graux et al., 2011), and their potential as sinks for
carbon storage and the mitigation of greenhouse gas emissions (Chang et al., 2015a; Jones and Donnelly,
2004; Sandor et al., 2018). In these studies, the most commonly simulated variables are aboveground
biomass (AGB) or net primary productivity, providing a synthetic indicator to evaluate the productivity of

grassland and the applied models were calibrated and validated based on vegetative variables, such as AGB.
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owever, vegetative variables are tightly linked to water dynamics in soils constraining ecosystem
productivity (Archontoulis et al., 2020; Tang et al., 2018), and thus a model calibrated using solely
vegetation variables may not be sufficient to predict soil-related services or disservices and may result in
unrealistic representations of soil processes. Including soil moisture as a constraint to plant growth in the
calibration process is critical to add explanatory power to the plant-related target variables. The main
difficulty in this context is the interdependency of soil water and vegetation dynamics and the simultaneous
consideration of parameters and variables related to both vegetation and soil processes in the calibration.
Multi-objective approaches help the model to simulate various observation data concurrently and close to
reality (Houska et al., 2017), since, in contrast to single criterion calibration procedures, they also take into
account the existence of compensating effects when calibrating the model. Considering multiple variables
combined with global optimization routines/algorithms in calibration decreases the risk for the model getting
trapped in local minima, which may lead to a better fit for one variable, but to an unsuitable parameter set
representing other processes (i.e. right fit for wrong reason). To account for this feedback, it is crucial to
implement methods for model calibration capable of taking into account information that describes the
interconnected processes. In most studies with integrative aspects, different observation variables are
combined as a single objective (SO) which subsequently forms a basis to estimate the model’s parameters.
The multi-objective (MO) optimization perspective (Groh et al., 2018; Wohling et al., 2015), which
examines the trade-offs between different conflicting objectives, has received less attention in the
application of grassland models, and to the best of our knowledge, we offer the first study of an integrative
perspective in grassland simulations.

Process-based agro-ecosystem modeling is based on the simultaneous simulation of different interconnected
biophysical processes, which depends on various parameters describing behaviors of various conceptual
processes and the way they relate to each other (Fenicia et al., 2007). Some model parameters are extremely
difficult to measure or even cannot be directly measured and often have to be estimated inversely, through
an optimization procedure. Such procedures are intended to minimize deviations between simulated and
observed target variables, such as AGB, soil moisture (SM), or leaf nitrogen concentration. Since the
processes in agro-ecosystem models are closely interlinked, these minima are often only local, and
optimization procedures may reveal only one out of many existing minima, but not necessarily the global
minimum (or maximum). This means that the parameter values identified are associated with high levels of
uncertainty, which in turn may lead to poor model predictions. Reducing the uncertainty of these parameters
requires methods which consider A) multiple components of the model in an MO calibration framework
and B) quantification of the confidence level of output variables.

MO optimization approaches use tradeoffs to determine a set of non-dominated parameters that cannot be
improved for one objective without compromising the other objective. During optimization, these

approaches incorporate multiple objectives on the basis of different information such as: 1) multi-variable
4
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data representing different interrelated processes, 2) multi-site data, or 3) multi-response models considering
independent criteria of one model aspect (Efstratiadis and Koutsoyiannis, 2010; Kamali et al., 2013).
Therefore, instead of converging around a single optimum, MO approaches spread search in parameter space
in a way to detect a number of feasible parameter sets (solutions) with acceptable trade-offs along the Pareto
front (Proximedia, October 8, 2018). Given the fact that different parameters activate different processes in
the model (Efstratiadis and Koutsoyiannis, 2010), exploring the trade-off between different objectives
(considering various variables) assists models in finding a more realistic and robust parameter estimates.
Furthermore, evaluating the trade-off among solutions located on the Pareto fronts provides additional
indications on probable limitations of a model (Efstratiadis and Koutsoyiannis, 2010). For example, an
irregular shape of a Pareto-front can be a sign for an ill-posed model, or a significant trade-off points to a
probable ill model parameterization. A proper evaluation of these additional information obtained from MO
approaches help modelers to better assessment of model performance and consistency and find robust
solutions to reduce the uncertainty in the model.

The most common algorithms for MO calibration include MO particle swarm optimization (Kennedy and
Eberhart, 1995), MO genetic algorithm (Fonseca and Fleming, 1993), and MO complex evolution (Yapo et
al., 1998). While most MO methods offer superior performance compared to SO calibration (Kamali et al.,
2013), they also suffer from their inability to provide information on the uncertainty of model predictions.
Bayesian approaches can account for parameter uncertainty in optimization, and their superior performance
vis-a-vis SO approaches has recently been demonstrated for eco-hydrological models (Tang et al., 2018;
Wohling et al., 2013) where mostly two variables (LAl and SM) have been considered. However, their
application for calibration of grassland models have been limited mostly to SO approaches where the errors
from different variables were aggregated to overall one single function (Hoglind et al., 2016; Korhonen et
al., 2018). The complex dynamics of grasslands, strongly vary depending on the types of their management
(intensively and extensively managed grasslands), species composition and prevailing soil. Therefore, we
assume that model calibration will benefit a lot from considering multiple key variables e.g. LAl as a model
state variable, AGB and SM. Despite the importance, the current studies lack reflection on uncertainty-based
calibration and parameter estimation approaches which capitalize on: 1) information that describes the
multiple variables and find the trade-off among different variables; 2) the uncertainty ranges of each
variable; and 3) the comparison of these approaches on intensively and extensively managed grasslands.

In this paper, we aim to 1) implement an uncertainty-based MO calibration procedure to a process-based
models simulation model for grassland (Nendel et al., 2011) to understand how it helps to improve the
simulation of different soil and vegetation processes; 2) analyze the implications (scaling/uncertainty)
derived from the simulation of managed grasslands in Germany, and use that information to quantify the
level of uncertainty associated with biomass estimates across different regions of Germany. The method

proposed and applied accounts for all sources of uncertainty, such as model input, model structure, model
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parameters, and measured data, and does not disentangle different types of uncertainty. The suitability of
the method is tested against data from grassland sites with two/three cutting events per growing season
(extensively managed) and sites with four/five cutting events per growing season (intensively managed).
Overall, five experimental sites located in different parts of Germany were selected. In this paper, we
maintain our assumption that grassland management (i.e. intensively and extensively managed grasslands)

relates directly to only the number of cutting events.

2. Methodology

2.1. Data sources

Two data sets were used in this study. For the sensitivity analysis, model calibration and model validation,
we used data from five experimental grassland sites that have been originally designed for different projects
(see Table 1). The second data set includes national-scale soil and climate data for German-wide simulations
of grasslands (see section 2.4 for details).

The five experimental sites are: 1) Braunschweig (to understand the increasing importance of grassland
areas for sustainable agricultural practice), 2) Rollesbroich and 3) Selhausen (long-term observation from
lysimeters to investigate hydrosphere, biosphere and atmosphere interactions), 4) Bad Lauchstadt (to
investigate the consequences of future climate scenarios for ecosystem functioning in different land-use
types on large field plots), and 5) Giellen (a free-air carbon dioxide enrichment experiment to investigate
the effects of multiple environmental factors on C3 plants, including the CO fertilization effect). These data
had all been collected within different research projects. The temporal resolution of the data varied
depending on the project, variable, and year. For SM, the temporal resolution of data were daily or weekly
most of the time, whereas the temporal resolution of LAl and AGB varied from weekly to bi-monthly within
growing season (Table 1). The sites are located in different parts of Germany (Fig. 1a), featuring different
climatic conditions, cutting regimes, and soil types (Table 1). The climate data used for these experimental
sites were obtained from the closest station from the German Weather Service (Deutscher Wetterdienst,
DWD) to each site. The average yearly precipitation at these sites over 30 years during 1990-2020 varied
from 494 mm yr? in Bad Lauchstadt to 910 mm yr? in Rollesbroich. The average annual air temperature
ranged from 8.75 °C in Rollesbroich to 10.6 °C in Selhausen.



a) Experimental sites used for model calibration/validation b) Natural unites used for German-wide simulations
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159  Fig. 1: a) Geographic location of the five experimental grassland sites selected for model calibration and
160  validation and farm sites used for defining management for national-scale simulations; b) the eight natural
161  units for Germany-wide simulation (NUnits 1-8) specifying the different landscape types across Germany
162  that were used to compare grassland productivity at the regional scale.



163  Table 1: Location and characteristics of grassland study sites. The numbers in brackets show the number of plots for which measurement data were
164  available. LAI: leaf area index; AGB: above ground biomass; SM: soil moisture. The average yearly precipitation and temperature were obtained from
165  DWD climate stations over 30 years during 1990-2020
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The soil data of each experiment have been measured within the mentioned projects (See Table 1) and
became available for this study. More detailed information on the soil profiles is presented in Table S.1.
Similarly, management data (cutting dates and fertilization) were recorded for these projects (Table S.2).
The measured values for LAI (leaf area index) and AGB were available to evaluate simulations of vegetation
dynamics. The SM values, measured at different depths across the soil profile (depending on the
experiment), were used to evaluate simulations of soil water dynamics.. The grassland sites also differ with
respect to the number of cutting events per growing season (Table 1).

To simulate grassland production across Germany, we collected information on cutting dates from different
grassland farms across Germany (Fig. 1). Daily records of minimum and maximum temperature, radiation,
precipitation, wind speed, and relative humidity were obtained from the German Weather Service
(Deutscher Wetterdienst, DWD) and interpolated in a 1 km? grid as described in Zhao et al. (2015). Data
were available for the period 1990-2018. The original soil data source is the soil map of Germany, at the
scale of 1:200,000, differentiated by land use (BUK200N, “Nutzungsdifferenzierte Bodeniibersichtskarte”,
German Federal Institute for Geosciences and Natural Resources (BGR, 1995). For input into the process-
based model, soil information was delineated according to DWD grids. The soil parameters required for
model simulations included soil texture in mass fraction, as well as volumetric (%) soil water content at
saturation, field capacity, and permanent wilting point. We simulated grassland types with different numbers
(two, three, four, and five) of cutting events per growing seasons. For regional comparison of grassland
production across country, the landscape of the country was divided into eight regions or natural units
(NUnits 1-8) based on geomorphological, hydrological, and geological criteria (Fig. 1b and Table S.3)
(DWD, 1994). In this paper, the grassland productivity of different natural units have been estimated from

Germany-wide simulations.

2.2.  The grassland model

The MONICA model is a process-based agro-ecosystem simulation model for simulating crop growth, water
dynamics, and nitrogen dynamics for practical applications. It is an extended version of HERMES
(Kersebaum, 2007) for the carbon cycle in soil and plants. The model’s code is generic, meaning that soil—
plant-water processes can be described using crop-, species-, and soil-specific parameters. MONICA has
been tested for a variety of crops in Central Europe (Nendel et al., 2014; Stella et al., 2019), and its generic
structure can accommodate grassland characteristics to some degree. Grass growth processes are simulated
by dividing growth into six phenological stages, from emergence to senescence (Table S.4). The transition
from one stage to another is driven by the accumulation of temperature sum above a base temperature.
Owing to differences in the vegetation development of perennial and annual plants, some adaptations were
required to achieve the desired level of model performance for perennial grasses, drawing on earlier model

implementations that simulated grapevine growth (Nendel and Kersebaum, 2004).
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First, unlike annual crops, which are harvested once during the growing season, perennial grasses are often
cut several times in a single growing season. Therefore, after each cutting, the growth stage of the plant is
reinitialized to the leaf emergence stage. We added four options to determine the amount of stubble mass
remaining after a cutting event: 1) percentage of stubble remaining on the field; 2) the amount of biomass
(kg ha*) remaining on the field; 3) grass height after cutting; and 4) the LAI value after cutting.

Second, grasses survive from one year to another, going dormant each fall and regrowing each spring. The
stolon of grasses provides new growing points during tilling each spring as well as after cutting. To
incorporate this trait of grasses, the model defines a perennial reserve organ for grass plants. Each day, the
potentially available carbohydrate from the reserve organ is calculated and added to the daily assimilate
production. The day’s maintenance respiration costs and any assimilated loss due to growth-limiting factors
are subtracted from the total; the remainder is the amount of carbohydrate available for regrowth. Two
factors determine the contribution rate of the reserve organ during regrowth: 1) a coefficient called
StageMobilFromStorageCoeff, which varies according to the developmental stage of the plant, and which
is estimated during calibration; 2) a coefficient that modifies the contribution of the storage organ based on
the average temperature of the day (Mitchell et al., 1995). Finally, the root systems of annual crops typically
die after the growing season. For grasslands, however, to avoid unnatural accumulations of root mass in the
soil the model uses the pre-defined pools in MONICA to simulate a small proportion (2-6%) of the root

dying back every day, thus contributing to soil organic matter decomposition and mineralization.

2.3. Model parameterization, sensitivity analysis, and calibration

We followed three steps to simulate grassland productivity across Germany (Fig. 2). As is typical for
environmental modeling, the first step was to conduct a sensitivity analysis to define the most sensitive
parameters. MONICA has over 200 parameters describing different processes such as plant growth, soil
water, and soil carbon turnover processes. Some of them relate to growth stages (Table S.4) and plant organs
(e.g. root, leaf, stem, and stolon for grasslands). In this study we selected 111 parameters which were
relevant for simulating vegetation and soil moisture components (Table S.5). The sensitivity analysis was
conducted for the five experimental sites presented in section 2.1. Soil properties were considered only in
the first step of sensitivity analysis and of course not during the calibration. The reason to include these
parameters in sensitivity analysis was to reflect some knowledge on uncertainty due to soil heterogeneity
which is important for simulation at large scales simulation with 1 km?resolution. In fact, at such scale, the
soil properties vary significantly at such spatial scale and its uncertainty should be considered. However,
we did not use soil characteristics as parameters for calibration in any experimental results.

Sensitivity analyses have already been implemented for MONICA in previous studies (Specka et al., 2015,

2019), yet they have lacked analysis related to the new version of the model for perennial crops with newly
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added parameters (Section 2.3.1). Having identified the most sensitive parameters, we implemented SO and
MO calibration procedures (Section 2.3.2). The final parameter sets and their ranges were then used to
simulate grasslands with different numbers of cuts per growing seasons (i.e. two, three, four, and five cuts)

across Germany.

1) Sensitivity analysis (section 2.3.1)

Model parameters State variables
Environmental parameters Sensitivity Soil moisture (SM)
Soil parameters D — Leaf Area Index (LAI)
Crop and species parameters Aboveground Biomass (AGB)

Parameter screening using the Morris method
Selection of the non-influential parameters

Parameter ranking using the Sobol method '
Selection of the most sensitive parameters for each state variable !

SO-SUFI2 MO-Pareto MO-SUFI2

Finding optimal and suboptimal Pareto |!

Implementing sequential uncertainty Finding non-dominated solutions || |
considering uncertainty :

; fitting (SUFI2) algorithm ! using Pareto algorithm

Estimating uncertainty ranges by

Estimating uncertainty ranges of '
' ranking Pareto fronts

parameters

Defining uncertainty range from
non-dominated parameters

gl :I______________________I __________________
Comparing p-factor, r-factor, and rRMSE of LA, AGB, SM }a—‘

v
Final ranges of parameters ‘
| R '+ """""""""""""""""""""""""""" i
i 3) Germany-wide grassland simulations (section 2.4) i
i 1 kmZ2resolution Spatiotemporal mapping of intensively and i
| climate data extensively managed grasslands and quantification | |
| BOEK200 soil data of grassland productivity at the level of natural units | |

Fig. 2. Schematic representation of the proposed three-step framework (sensitivity analysis, calibration,
Germany-wide grassland simulation) for mapping grassland productivity under various cutting regimes.
2.3.1. Sensitivity analysis

We conducted sensitivity analysis for all five experimental grassland sites mentioned in Table 1.
Accordingly, the soil and weather data used for each experiment have been explained in section 2.1. Similar
to methods widely-used in literature (Confalonieri et al., 2010), sensitivity analysis proceeded in two steps.
The first step was to use a screening method to exclude non-influential parameters. The Morris method was
selected for this purpose (Morris, 1991). In the process, parameter sensitivity is defined by making local
changes at different points across possible parameter ranges. The main advantage of this method over
variance-based methods (which are more reliable for ranking sensitivity) is that they require less
computational effort in cases with huge numbers of parameters. Therefore, it provides a possibility to screen

parameters and exclude those with non-influential effects. This subsequently reduces the number of
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parameters when applying variance-based methods, such as the Sobol method (Sobol, 1967). The Morris
method uses two measures — [ (the mean of the distribution of the elementary effects) and o (the standard
deviation of the distribution of the elementary effects) to identify the sensitivity of parameters. To calculate
K and o, the method first calculates the Elementary Effect (EE), which is obtained from dividing the
parameter space into p discrete levels. The model outputs are then calculated for r trajectories within the

parameter space. EE for parameter i is defined as:

— f(X1,.-,Xi_1,X[+A,Xi+1,.-,Xn)_f(X) (1)
A )

EE;
where A= p/(2(p — 1)). After repeating the procedure r times, the mean and standard deviation of EE is
used as a measurement to evaluate the sensitivity of parameters. That is, we obtain the Morris measures of u
and o for each parameter i as:

T
_ Zj=1EEij

My =—— )

and

@)

Based on the combination of o and p, the parameters are grouped into three classes: 1) parameters with
negligible effects (here, o <0.05 and pu<0.05); 2) parameters with large linear effects without interactions
(high o with low p); and 3) parameters with large non-linear and/or interaction effects. We excluded from
subsequent analysis the parameters that fell into groups of parameters with negligible effects i.e. o <0.05
and p<0.05.

In the second step, the remaining parameters from the Morris method (group 2 and 3) were ranked to
determine the contribution of each factor to the total variability. To do so, we used the Sobol variance-based
approach. The probabilistic framework of this method decomposes the variance of the model output into
fractions, which can then be attributed to inputs or sets of inputs. The method makes it possible to calculate
two indices: 1) the main effect (ME) sensitivity index, which measures the direct effect of individual factors

on the variance of the outputs:

Variance(E[Yield| X;]) (4)

Main effect; = variance (Y)

where E[Yield| X;] denotes the expected value of yield across all factors Xi, and 2) the total effect (TE)

sensitivity index which corresponds to a single factor and the interaction of multiple factors:
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Variance (E[Yield| X_;])
Variance (Y)

Total effect; = 1 —

()

where E[Yield| X_;] is the expected value of yield across all factors except Xi.

2.3.2. Model calibration

We calibrated the model by using one SO and two MO calibration algorithms and then compared the results.
The three optimization algorithms differ in their strategy for searching parameter ranges. To compare the
performance of all three algorithms, we used three criteria: one to compare the simulated and observed
variables and to identify the best-performing parameter set using relative root mean square error (rRMSE),
and two additional criteria (p-factor and the r-factor) to show the goodness-of-fit and the level of uncertainty
of the model. In all three algorithms and to evaluate the accuracy of the different calibration procedures and
find the best performing models, we compared the observed and simulated values of three reference
variables v (LAI, AGB, and SM) using rRMSE which is calculated as:

; 2
™ (Observed;,—Simulated;,)

=
rRMSE,, = (6)

Std (Observedy)

The respective error functions for the three reference variables in this study are rRMSE| 4;, rTRMSE 5, and
rRMSEj,, for LAI, AGB, and SM.

The performance of models regarding the level of uncertainty in the model were measured using the p-factor
and the r-factor Criteria. The p-factor criterion represents the fraction of measured data bracketed by the
95PPU uncertainty band and varies from 0 to 1, where 1 means that 100% of the measured data is bracketed
by the model simulation (expressed as the 95PPU). Values around 0.5 are usually considered acceptable for
crop simulation (Kamali et al., 2018). The r-factor criterion is the average width of the 95PPU band divided
by the standard deviation of the measured variable, which is a measure of prediction uncertainty. The ideal
value for r-factor is 0, with an acceptable practical value of around 2 for crop yields (Kamali et al., 2018).
Detailed information describing this method can be found in Abbaspour (2015).

The two experimental sites of Gielenl (a site with two/three cuts per growing season) and Rollesbroich (a
site with four/five cuts per growing seasons) were selected as calibration sites, because they both had
measured variables for LAI, AGB, and SM. The parameter ranges obtained from the calibration sites were
then transferred to other sites to test model suitability at the validation stage. The parameter sets obtained
from the calibration procedure were then used to test the performance of the model in terms of simulating

other variables in the validation sites with an independent dataset.
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Single-objective uncertainty-based calibration (SO-SUFI12)

This study used the sequential uncertainty fitting algorithm (SUFI-2) technique (Abbaspour et al., 2015) for
SO calibration which considers on one variable at a time. The algorithm maps all uncertainties in the output
on the parameter ranges. Uncertainty was quantified by the 95% prediction uncertainty (95PPU) calculated
at the 2.5% and 97.5% levels of cumulative distribution of an output variable obtained using Latin
Hypercube sampling in the parameters’ space. We started the SO-SUFI2 procedure with 1,000 parameter
sets sampled from wide ranges in the first iteration. The p-factor r-factor, and rRMSE values were
accordingly calculated. If they were not within the acceptable ranges (p-factor larger than 0.5 and r-factor
between 0.9 and 2). The algorithm calculated a new range for each parameter, based on the comparison of
simulated and observed variable e.g. the rRMSE_a of 1,000 samples. The new ranges of parameters were
then used to create another 1,000 samples of parameter sets in the second iteration. We continued the
iterations until we reached a compromised balance between the p-factor and the r-factor. In this paper, the
best compromise between two criteria was reached after three iterations. The objective functions used in the

second and third iteration were the same as the first iteration (rRMSE, p-factor, and r-factor).

Multi-objective calibration based on Pareto optimality (MO-Pareto)

The SUFI-2 algorithm was developed for SO calibration. The structure of the algorithm combines multiple
objectives into one, and was not designed in a way to optimize multiple objectives at the same time
(Abbaspour, 2015). In the case of multiple objectives, the algorithm calculates the average of different
objectives and considers it as a single final value for optimization. We are interested in the simultaneous
optimization of multiple objectives (rRMSE, 4;, TRMSE,;5, and rRMSEg,,). Therefore, we tested the
suitability of the MO calibration approach, which is based on minimizing more than one objective function
according to Pareto optimality concepts (hereafter MO-Pareto). The Pareto optimality concept provides a
set of possible solutions based on the tradeoff among two or more error functions — that is, there is no unique
set of optimal parameters, but a number of solutions exist in which it is not possible to improve one objective
function without compromising at least one other. Such solutions are called Pareto, non-dominated, non-
inferior, or efficient solutions.

The non-dominated solutions comprise a front called an optimal Pareto front (Fig. 3a), which divides the
search space of solutions into feasible and infeasible regions. As shown in Fig. 3a (as an example), Solution
1 has the lowest rRMSE| 4;, but the highest rRMSEg,, among all solutions located on the optimal Pareto
front. In contrast to Solution 1, Solution 2 has the lowest rRMSEj,, and the highest rRMSE ;5. Therefore,
the two solutions are non-dominated vis-a-vis each other, meaning that one is ideal for one objective
function and the other is ideal for another objective function. The MO-Pareto algorithm explores the search
space of the parameters and aims to define the optimal Pareto front. The Pareto optimality conditions are

defined as:
14
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Vv = LAI,ABG,SM: TRMSE,(6;) < rRMSE,(6;) )
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a) MO-Pareto b) MO-SUFI2
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TRMSEgy @ Dominated solutions A M

4 -@- Optimal Pareto front

N
S
®
-
=v}
<
A
<1
(9}
5]

TRMSE,,,

Fig. 3: Hlustrations of the MO optimization method based on Pareto-optimal concepts (MO-Pareto) for
three objectives. In a), the optimal Pareto front divides the search space into feasible and infeasible regions;
b) shows the schematic representation of ranking Pareto fronts used to measure the model uncertainty (MO-
SUFI2) by searching in two orthogonal dimensions i.e. Pareto-along and lateral search.

The first expression divides the feasible parameter space into two sets of feasible (Pareto) and infeasible
solutions. The second expression states that, in the absence of additional information, it is not possible to
distinguish among any of the efficient solutions as being objectively better than any other. The MO-Pareto
algorithm considers only rRMSE to search among feasible solutions and find the optimal Pareto front.
During the search, the algorithm does not take into account p-factor and r-factor (as the representative
criteria in our study) to evaluate the model performance in terms of capturing uncertainty band. We here
calculated p-factor and r-factor according to those non-dominated solutions located on the optimal Pareto
front as a surrogate to parameter ranges. By calculating p-factor and r-factor, we tested if the parameter sets
located on the optimal Pareto front yield satisfactory p-factors and r-factors or not. This provides a solid
base to compare the performance of this technique with others in terms of capturing the uncertainty ranges

of parameters.
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Novel uncertainty-based multi-objective SUFI-2 (MO-SUFI12)
The MO-SUFI2 with v state variables (i.e. v objective functions) combines the Pareto optimality concept
with the uncertainty-based concept of SO-SUFI2. During the search process, the algorithm not only
considers all three variables, but also search parameters spaces strategically in a way that finds those ranges
giving acceptable p-factor and r-factor values. The Pareto optimality concept focuses on considering
multiple objectives during optimization, which when combined with the SO-SUFI2 concept in the novel
MO-SUFI2 algorithm, makes it possible to find the uncertainty ranges of model parameters. This integrative
perspective in MO-SUFI2 is possible by exploring the parameter space using two types of searching
orthogonally to each other (Fig. 3b): 1) the Pareto alongside search, which identifies those non-dominated
solutions that satisfy multiple objectives; and 2) the lateral search, which divides feasible solutions into sub-
solutions by defining multiple Pareto fronts and ranking them based on the distance from optimal Pareto
front (Fig. 3b). The ranking of candidate parameters allows to stratify the search space along lateral
direction and adjust the ranges of the parameters until the satisfactory p-factor and r-factor values are
achieved. We first start with defining rank-1 (which is the optimal Pareto front in MO-Pareto). We first start
with separating parameter sets with rank-1 from all candidate sets using Equations 7 and 8. These sets are
actually the optimal Pareto front already obtained in MO-Pareto. Having excluded them from the candidate
parameter sets, we define rank-2 with the remaining sets using the same equations. The more specific
stepwise procedure of the MO-SUFI2 algorithm is as follows:

1) The MO-SUFI2 algorithm started with N numbers (here N=100) of parameter sets, i.e. feasible solutions
stored in one main repository.

2) The v objective functions, i.e. YTRMSE, 4;, T/RMSE,;5, and rRMSEj,,, were calculated for all N feasible
solutions.

3) The Pareto rules (Equations 7 & 8) were applied and the non-dominated solutions located on optimal
Pareto fronts were selected. The solutions located on the optimal Pareto front were assigned to the first
rank.

4) The first-rank solutions were removed from the main repository.

5) The Pareto rules were reapplied to the remaining solutions in main repository to identify a new set of
non-dominated solutions, labeled as the second rank.

6) Steps 4 and 5 were repeated until all N solutions were labeled with a rank, as illustrated in Fig. 3b.

7) In solutions with the same rank, we took out 5% of those solutions with highest residual between
objective functions, i.e. solutions that performed worse in at least one objective function.

8) The p-factor and r-factor were calculated based on the first-rank solutions stored in the repository. If
the p-factor and r-factor exceeded their pre-specified thresholds, the algorithm stopped and the p-factor
and r-factor became the final values. In this paper, the threshold defined for the p-factor was a value

above 0.5, with the r-factor varying between 0.9 and 2.0. If these conditions were not fulfilled, the
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second-rank solutions were combined with solutions from the first rank and the p-factor and r-factor
values were recalculated. The stepwise procedure of recalculating p-factor and r-factor was continued

until the final p-factor and r-factor met the specified threshold for the p-factor and r-factor.

2.4.  The simulation of grasslands across Germany

The parameters ranges obtained from MO-SUFI2 calibration were used to simulate the fresh AGB of
grasslands across Germany. We simulated the MONICA model for all grids across Germany and calculated
the annual amount of fresh AGB exported from the field/grid (hereafter Yield) as model output. The next
step was to determine the spatiotemporal dynamics of grasslands and uncertainty levels for Yield estimation
in Germany’s eight nature units (NUnits 1-8) during 1991-2018 (Fig. 1b). We extracted the productivity of
grasslands for all grids within each natural units and then calculated the average fresh AGB. Simulations
were conducted for four cutting regimes: two and three cutting events per year as representative of
extensively managed grasslands and four and five cutting events as representative of intensively managed
grasslands. We assumed fixed cutting dates across all grids, based on information collected from farmers
throughout Germany (farm sites in Fig. 1). The amount of fertilization applied in the different cutting
regimes was 30 kg N ha at the beginning of the growing season and 15 kg N ha* five days after each cutting
event (Table S.6).

3. Results

3.1. Sensitivity analysis

The Morris sensitivity method for experimental sites did not show differences in the identified most sensitive
parameters among case studies and the result for all were found to be similar to each other. The ¢ and u
indices were calculated according to daily information within this simulation time. Fig. 4a shows the
maximum ¢ values during the growing season for different parameters in relation to the LAI, AGB, and SM
state variables. We screened parameters based on the calculated o and u values and excluded those with
values smaller than 0.05, owing to their negligible influence on simulating those state variables. As Fig. 4a
shows, the most sensitive parameters varied depending on the state variable. For example, the soil texture
parameters (Field Capacity and Pore Volume) and StageKcFactor were most relevant when simulating SM,
whereas AGB and LAl were most affected by the parameter SpecificLeafArea. Additionally, some
parameters, such as OrganGrowthRespiration and BaseDayLength, were sensitive for the simulation of all

three state variables.
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Fig. 4. a) Screening method: the sensitivity of different parameters to the LAI, AGB, and SM variables
obtained from the Morris screening method. The results were obtained from those parameters with a
maximum p (i.e. maximum during the growing season) exceeding 0.05. b) Ranking method: the temporal
variability of the ME (main effect) sensitivity index during the growing season (shown in terms of Julian
days) obtained from the Sobol ranking method. Only parameters with maximum ME>0.05 are depicted.
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We also looked at the relationship between u and o to check if there was any interaction between sensitive
parameters. As shown in Fig. S.1, a high value of x occurs with an equally high (or even higher) o, meaning
that nonlinear relationships exist among variables. This means that the most sensitive model parameters
(parameters with high u) also have high levels of interaction with other parameters. We did not further
analyze the interaction of parameters in the first step of the sensitivity analysis, because in this paper the
Morris screening method was only used as a preliminary screening analysis to eliminate those parameters
with negligible effects, which was critical for reducing computational costs. Overall, after excluding
parameters with o and i« smaller than 0.05, 20 parameters (out of 111 initial parameters) were found to be
sensitive. It is worth remarking that the model dimensionality was even higher than 20, because some
parameters, such as OrganScenesenceRate and AssimilatePartitionCoeff, are not individual values but are
an array or a matrix, as their values vary depending on the growth stage of the plant (Table S.4) and on the
plant organ (root, shoot, leaf, and stolon). Here, we only presented the average values obtained from all

organs and growing stages.

The Sobol method was carried out next, based on the most relevant parameters obtained from the Morris
method for each day during the growing season. Fig. 4b shows the daily temporal variation of ME during
one growing season, revealing that the ranking of most parameters varied during growing seasons.
Moreover, the number of sensitive parameters and their sensitivity differ depending on the state variables
(LAI, AGB, or SM). Some parameters, such as SpecificLeafArealndex, were identified as the most sensitive
parameter for simulating AGB and LAI during the growing season. However, other parameters, such as
OrganMaintanenceRespiration, exhibited a higher sensitivity than MaximumAssimilationRate in early
stages of the growing season, but at the end of the growing season, MaximumAssimilationRate was found
to have been more sensitive than in early stages. This clearly demonstrates the temporal sensitivity of

parameters during the observation/growing season.

3.2. Single-objective calibration

The results of calibration shows promising performance for both grassland sites with two/three cuts and
four/five cuts (Figs. 5a and b). The best performing parameter set (the set with the lowest rRMSE_4) with
an rRMSE_a of 0.67 for GieRenl and 0.61 for Rollesbroich shows that MONICA is able to replicate the
dynamics of LAI. The p-factors of 0.65 for GielRenl and 0.61 for Rollesbroich indicate that over 60% of the
observed values are covered by the 95PPU band. The r-factor values of 1.64 and 1.42 for GieRenl and
Rollesbroich respectively are within the range of acceptable values in the literature (Kamali et al., 2018).
As seen in Figs. 5¢-5h, the results are promising in both validation grassland sites with two/three cuts and
four/five cuts. The rRMSE_a in validation sites exhibited an approximately similar performance to those of

the calibration sites. The p-factors with values varying between 0.50 and 0.64 are close to the calibration
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sites, with slightly outperforming values from Bad Lauchstadtl and Bad Lauchstddt2. The r-factors
reacheds their lowest value of 1.63 in Bad Lauchstédtl and Braunschweig, with the highest value of 1.96 in

Selhausen, both of which are quite close to the value of 1.42 at their corresponding calibration sites.
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Fig. 5. MONICA simulations of Leaf Area Index (LAI) dynamics based on data from the calibration (a, b)
and validation (c-h) sites, after the model was calibrated only for LAI using SO-SUFI2, i.e. minimizing
rRMSE_ai. The left column shows the results for grassland sites with two/three cuts, the right column for
sites with four/five cuts. The p-factora, the r-factor.a, and the relative root mean square error (rRMSE_ai)
are given as the performance indicators.

We also checked the performance of the calibrated model (against LAI) in terms of simulating AGB and SM
variables. The results for AGB and SM were not as robust as for LAI (Figs. S.2 and S.3). As shown in Fig.
S.2, the rRMSE g Vvalues for all sites (with the exception of Rollesbroich and Selhausen) were above 2.0,
which is considerably higher when compared with rRMSE_a. The p-factors with values smaller than 0.1
confirmed the inadequacy of the calibrated model (against LAI) in terms of capturing observed AGB and
SM within 95PPU (Figs. S2 & S3). In the next step, we calibrated the model based on AGB, and found that
better performance could be achieved in terms of simulating AGB, but the calibrated model using AGB as
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the target variable (i.e. minimizing rRMSEagc) this time did not perform adequately well for LAI (Table 2).
For example in GielRenl, the rRMSEags improved from 2.42 to 1.01, but the rRMSE_4 increased from 0.67
to 1.30. A similar pattern emerged when we calibrated the model based on only SM (minimizing rRMSE_ai)
(Table 2). For example, one can see improvement in rRMSEgsw from 0.97 to 0.75 in Bad Lauchstadtl. Using
the sum of the objective functions (rRMSEa + rRMSEace + rRMSEsw) did not improve the results either,
as the optimization algorithm may have tended to optimize based on one criterion. In Bad Lauchstadtl,
while integrating all three objectives improved the overall performance, the model performed worse in terms
of rRMSE_a with a highest value of 0.89. This emphasizes the implementation of a multi-objective
calibration procedure, which considers the impact of improving one objective at the expense of another

objective function.

3.3.  Multi-objective calibration

3.3.1. Traditional multi-objective calibration (MO-Pareto)

Fig. 6a shows the results of the calibration using Gieenl data. The non-dominated solutions on the optimal
Pareto front indicate solutions for which improving one objective occurs at the expense of compromising
another objective. The solutions located on the optimal Pareto front (optimal non-dominated solutions) were

used to calculate the p-factor and r-factor values, and the best performing solution (i.e. the lowest rRMSE)

was extracted from that. Comparing the dynamics of best-performing LAI, AGB and SM in MO-
6a) with SO-SUFI2 (Figs. 5a and S.3a) showed a lower rRMSEacs (from 2.42 to 1.89) and rRMSEswm (from

0.77 to 0.72). However, no improvement was seen in rRMSEsw as well as in the p-factor and the r-factor

Pareto (Fig.

values. The model behavior in Braunschweig as validation site improved (Fig. 6b). The rRMSE_a with a
value of 0.67 in the MO-Pareto approach decreased to 0.51 in SO-SUFI2. At the same time, rRMSEswm values
improved from 0.73 in the SO-SUFI2 calibration scheme to 0.66 in the MO-Pareto calibration scheme. We
did not see improved values for p-factor and r-factor values when we applied the MO-Pareto calibration
scheme, i.e. p-factor values were smaller than 0.5 and r-factor values were very low. This indicates that the
non-dominated solutions located on the optimal Pareto front may not be representative of parameter

uncertainty.
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Fig. 6. MONICA simulations of multiple target variables, after the model had been simultaneously
calibrated using the MO-Pareto calibration algorithm: a) calibration in MO-Pareto and b) validation in
Braunschweig. The relative root mean square error (rRMSE), the p-factor and the r-factor are given as

performance criteria.
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533  Table 2. Comparing performance indicators of the rRMSE, the p-factor, and the r-factor based on utilizing different combinations of rRMSE i, rRMSEagg,
534  and rRMSEgw as objective functions for model calibration (“min” here means “minimization”)
Grassland site with two/three cuts
(calibration: Gief3enl)

Objective function rRMSELai rRMSEace rRMSEsw | p-factoriar  p-factoracs p-factorsm | r-factorcar  r-factoracs r-factorsm
min [rRMSELal] 0.67 2.42 0.76 0.65 0.25 0.27 1.64 1.55 0.05
min [rRMSEnxcs] 1.30 1.01 0.81 0.42 0.43 0.38 191 1.20 0.03
min [rRMSEswm] 122 181 0.66 0.41 0.35 0.44 181 1.33 0.40
min [rRMSELal + rRMSEacs + rRMSEsw] 0.72 2.2 0.78 0.55 0.40 0.40 1.7 1.25 0.23

Grassland site with two/three cuts
(validation: Braunschweig)

min [rRMSE_.al] 0.70 - 0.73 0.64 - 0.35 1.63 - 0.06
min [FRMSEacs] - - - - - - - - -

min [rRMSEswm] 0.81 - 0.63 0.51 - 0.51 1.50 - 0.90
min [rRMSELal + rRMSEacs + rRMSEswm] 0.75 - 0.8 0.51 - 0.38 1.45 - 0.89

Grassland with four/five cuts
(calibration: Rollesbroich)

min [FRMSE_al] 0.61 1.7 0.70 0.61 0.12 0.62 1.42 0.72 0.05
min [rRMSEnce] 1.02 15 0.75 0.48 051 0.55 1.66 1.02 0.08
min [rRMSEsw] 0.88 1.01 0.61 031 0.12 0.64 178 0.99 0.30
min [FRMSELai + rRMSEace + rRMSEswm] 0.65 1.63 0.75 0.44 0.23 0.66 1.70 0.88 0.23

Grassland with four/five cuts
(validation: Bad Lauchstadtl)

min [rRMSEal] 0.77 364 0.50 0.005 1.63 0.89
min [rRMSEacs] 0.88 1.33 0.49 0.22 1.23 0.90
min [rRMSEsw] 0.87 2.98 051 0.23 1.22 111
min [rRMSE¢ai + rRMSEacs + rRMSEsw] 0.89 1.40 0.50 0.10 1.30 1.12

535

23



536
537
538
539
540
541
542
543
544
945
546
547
548

549
550
951
552

3.3.2. Uncertainty-based multi-objective SUFI-2 (MO-SUFI2)

After the MO-SUFI2 calibration procedure was performed, based on the ranking of Pareto fronts, the
results were compared with the outcome from SO-SUFI2 calibrated using min (rRMSE a1 + rRMSEacs
+ rRMSEsyw) as an objective function as well as MO-Pareto algorithms. As shown in Fig. 7, the rRMSE
values obtained from both MO algorithms outperformed SO-SUFI2 for all state variables at both types
of grassland sites i.e. two/three cuts and four/five cuts. For example, the rRMSE_4 in Braunschweig fell
from 0.7 to 0.51 in MO-Pareto (Fig. 6) and 0.5 in MO-SUFI2 (Fig. 7a). Similarly, the rRMSE_a values
in Bad Lauchstadtl fell from 0.89 in the MO-Pareto calibration to 0.55 in MO-SUFI2. The MO-SUFI2
also performed satisfactorily in terms of the two objective functions designed to capture the uncertainty
bound, i.e. the p-factor and the r-factor. The p-factors for all three state variables at the calibration and

the validation stage and for both in grasslands with two/three and four/five cutting events were above

0.5; the r-factor varied between 0.85 and 1.3.
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Fig. 7. Comparing the results of SO-SUFI2 with MO-Pareto and MO-SUFI2 calibration at extensively
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managed (a-f) and intensively managed (g-1) grassland sites and at the calibration and validation sites.
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Fig. 8 shows the final ranges of parameters obtained from MO-SUFI2 during calibration. For some
parameters, such as AssimilationPartitionCoeff and OrganSenescenceRate, the ranges differed
depending on the organ (root, shoot, leaf, and stolon) and growth stages (Fig. 8). The SenescenceRate
values of root organs with values between 0.04 and 0.06 had the highest values compared with all other
organs. Fig. 8 shows that parameter uncertainty is higher for AssimilationPartitionCoeff and
MaximumAssimilatioRate compared with other parameters. Comparing the uncertainty ranges of
AssimilationPartitionCoeff for different organs presented wider ranges for stolon compared with other

organs for all six growth stages. This shows that reducing model uncertainty depends on detailed

information on partitioning the assimilated carbon among different organs.
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3.4. Simulation of grasslands across Germany

Figs 9a-d show the spatial distribution of annual AGB productivity (the sum of fresh AGB t ha* from
cutting events within the growing season) under different cutting regimes across Germany. The annual
productivity rates depicted below were obtained from the average AGB from 25 simulations executed
with 25 parameter sets sampled within the ranges obtained from 95PPU (Fig. 9). The spatial variability
showed a discernable high magnitude of productivity in northwest Germany, with values above 20 t ha-
Lyr, and low values in central Germany, with values lower than 12-15 t ha* yr for the four cutting
regimes. The difference in grassland productivity levels of different cutting regimes were well captured
by the model, as grasslands with a larger number of cutting events per growing season exhibited higher
productivity values in all parts of the country (Fig. 9a—d). Annual grassland productivity varied from 9
t ha! in central and southern Germany during regimes with two cutting events (the lowest amount) to
18 t hat in the northwest of Germany with four cutting events (the highest amount). Eastern Germany,
with productivity between 12 and 17 t ha™?, falls somewhere in between. Comparing the productivity of
two with three cutting events revealed no remarkable spatial difference between the two types in terms
of magnitude or spatial variability. The three-cut regime generated slightly higher productivity, mostly
in the northwestern part of Germany. Similarly, the comparison of four with five-cut regimes exhibited

a spatial difference mostly in the northwest of Germany (Figs 9 ¢ and d).

a) two-cutting events (AVG) b) three-cutting events (AVG) c) four-cutting events (AVG) d) five-cutting events (AVG)
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Fig. 9: Spatial distribution of average (AVG) grassland productivity during the period 1990-2018 for
a) two, b) three, c) four, and d) five cutting events per growing seasons. The average was obtained from
25 parameter sets within 95PPU uncertainty ranges; (e-h) spatial distribution of the standard deviation
(STD) of yearly grassland productivity showing temporal variability for e) two, f) three, g) four, and h)
five cutting events per growing seasons
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The temporal dynamics of grassland productivity showed considerable variation from one year to the
other (Figs. S.5-8). For all cutting regimes, the lowest productivity occurred in the years 1991, 1992,
2010, and 2013, when the seasonal amount of precipitation also was lowest (Fig. S.4). The highest
productivity was seen between 2000 and 2002, mostly in western and southern Germany, as well as in
2007. The standard deviation (STD) of the time series over the 27 years of the study period (1991-2018)
was calculated at the grid level to quantify the temporal variability of these grasslands’ productivity.
The results also showed a higher STD in intensively managed grasslands compared to extensively
managed grasslands. The STDs of grassland productivity were lower in western (<1.4 t ha™') compared

with eastern Germany (>2.0 t ha™?).
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Fig. 10. Comparison of the simulated 95PPU intervals of grassland productivity in eight nature units
(Fig. 1) during the period 1990-2017. The band interval shows the uncertainty derived from the 95PPU
calculations. The left (right) panels show the results for grassland with two/three (four/five) cuts. The
blue line shows the yearly precipitation.
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We also quantified the yearly 95PPU ranges of the grass productivity of different types of grasslands
with different numbers of cutting regims in eight nature units (NUnits 1-8) across Germany (Fig. 10).
Comparing productivity across these units revealed that NUnit 6 and NUnit 8 had the highest values,
and NUnit 3 and NUnit 8 had the lowest compared with the others. We also found that the uncertainty
of simulated grassland productivity (i.e. the upper and lower values of AGB obtained from the 95PPU
uncertainty band) was remarkably larger in grasslands with four/five cutting events compared with in
grasslands with two/three cutting events. The difference between the lower and upper uncertainty
bounds of grassland productivity increased to 4.0 t ha in grasslands with four/five cutting events,

whereas this number was a maximum of 2.0 t ha in extensively managed grasslands.

4. Discussion

4.1. Effects of the sensitivity analysis
In this paper, we applied a two-step sensitivity analysis procedure, i.e. screening and time-varying

ranking, which the literature has recommended as a systematic approach to sensitivity analysis (Pianosi
et al., 2016). The time-varying ranking of parameters provided useful information for the prioritization
of parameters to be estimated. Sensitivity analysis is a function of boundary conditions as well as time
(Paleari and Confalonieri, 2016). Ignoring this fact can result in the misinterpretation of parameters.
This is an important finding, which, although not new, still receives too little attention in many studies
(Herman et al., 2013; Zhan et al., 2013), especially in grassland modeling studies. The temporal
discretization of sensitive indices allowed for tackling the parameters which were influential for certain
periods within the growing season and provided deeper insights on the model’s temporal behavior.
Defining the most sensitive parameters of AGB or SM at only one certain stage of the growth season
(e.g. the end of the season or the vegetation stage) may result in misleading results, because the
sensitivity of some parameters may vary over the course of a growing season (Lamboni et al., 2009). In
our case, we found that MaximumAssimilatioRate and OrganScenesenceRate played key roles at the end
of every growing season.

Our results correspond with previous investigations from Specka et al. (2015) for the same model, which
showed that SpecificLeafArealndex was the most influential parameter for AGB and LA, the leaf is the
key organ for light interception and energy absorption (Wang et al., 2013). However, their ranking of
common parameters in the study of Specka et al. (2015) and ours differed for two reasons. First, unlike
their study, which focused primarily on annual crops, we focused on perennial grasslands. Moreover,
our study included additional processes that described grassland dynamics in the new version of
MONICA, as well as parameters such as StageMobilFromStorageOrgan. Therefore, our results
provided base information on model parameterization for the future application of MONICA when

simulating grasslands.
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4.2. Insights concerning multi-objective calibration in the context of uncertainty

The performance of grassland models in terms of simulating different variables have been investigated
in literature in which the SO calibration approach has been applied for parameter estimation (Héglind
et al., 2016; Korhonen et al., 2018). However, these studies did not take into account the trade-off of
grassland model performances in terms of simulating multiple variables (i.e. objectives) together with
uncertainty analysis (Hoglind et al., 2020; Persson et al., 2019), which is an essential concept in
uncertainty-based MO calibration. Those studies which presented results in terms of simulating multiple
variables lacked additional information on the uncertainty ranges of model output variables. This study
is one of the first attempt to consider both aspects for simulating grasslands. Our results for example
revealed that, when taking an SO calibration approach, improving one variable will occur at the expense
of compromising another variable. This means that the SO calibration has a limited capacity to represent
the multi-response dynamics in conceptual agro-ecosystem models; model calibration systems that take
into consideration multiple components of interconnecting soil, plant, and water processes are required.
This corroborates the findings of Groh et al. (2018), who found similar behaviors when identifying soil
hydraulic parameters based on various observations of soil-related state variables. The traditional MO-
Pareto calibration improved model performance in terms of the three target variables, but also
highlighted the weakness of the method in terms of gquantifying the uncertainty ranges of parameters.
Therefore, parameter optimization procedures should incorporate uncertainty into a model’s parameters
(Tao et al., 2018), which is important when simulating natural processes to measure things such as

grassland productivity over a large range of soil-climate situations — as our study did for Germany.

We therefore proposed a novel uncertainty-based multi-objective calibration approach i.e. MO-SUFI2,
which not only accounted for multiple variables, but also measured the associated uncertainty for each
of them. The method searches parameter space in two directions. The first direction (the Pareto-along
search in Fig. 3b) found non-dominated solutions located on the Pareto front, efficiently exploring the
search space in light of different target variables. The second search, which was orthogonal to the first,
ranked the previously discovered Pareto fronts and exploited those fronts which fulfilled the defined
thresholds for the p-factor and the r-factor. Optimization methods based on ranking Pareto fronts have
been used in other fields such as control systems (Ma and Qiu, 2014; Mittal and Singh, 2015), but to the
best of our knowledge, have never been applied in the context of environmental studies. Here, we used
this novel insight to calibrate agro-ecosystem models that work with water and vegetation variables; our
goal is to improve the modeling results of future researchers and nudge the parameters of such models
in a more meaningful direction. Overall, the comparison of the two MO approaches showed that they
do not necessarily conflict with each other, but MO-SUFI2 provides complementary information that

facilitates a better estimation of model parameters’ uncertainty.

Using our novel MO calibration approach, we found the reasonable parameter ranges for the most
sensitive parameters. The higher value of SenescenceRate for root organs value compared with all other

organs is consistent with the results generated by Malik et al. (2018), who adopted a constant 5%
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SenescenceRate for root organ throughout the growing season. Other organs (root, leaf, and stolon) all
had a lower SenescenceRate (<0.02) during Stage 2 to Stage 5. Only Stage 6 (which is defined as the
stage after maturity) showed high values for all organs. Overall, the ranges obtained for SenescenceRate
during each stage were consistent with the natural growth of grass, demonstrating that MO-SUFI2

performed satisfactorily in terms of capturing parameter uncertainty.

4.3. Implications of uncertainty-based multi-objective calibration for Germany-wide
simulations
Information on grassland productivity or related environmental impacts is not currently available at high

spatiotemporal resolution for Germany. Process-based simulation models can be used to fill this gap and
deliver such information. However, since the required input for driving models at this scale is still
fragmented, a range of assumptions need to be made prior to the simulation; this introduces uncertainty
into the simulation’s results. One of the main sources of uncertainty comes from the simulation model
itself. Process-based simulation models such as MONICA have been designed so as to reproduce the
complex interactions of ecosystem processes, but their reliability depends on estimating a large number
of parameters that describe different processes embedded in the model. With a limited set of
observations available to parameterize and calibrate a model for all the different shades of managed and
semi-natural grassland ecosystems that contribute to grass production for fodder or biomass, the
calibration process requires special attention. So far, only a few detailed experiments are available. In
most cases, experiments including observations on both water and nutrient cycles are even rarer, which
makes it challenging to set up a model in a way that supports our understanding of how these unique

ecosystems respond to changes in management and environmental conditions.

Despite all these existing limitations, however, quantifying model uncertainty is an essential element of
more robust and reliable decision-making regarding grasslands. Resorting to methods that separately
quantify different sources of model uncertainty, such as climate data (Parkes et al., 2019), soil data
(Folberth et al., 2016), model structure (Tao et al., 2018), or spatial scale (Ojeda et al., 2020), is
unwieldy, and sometimes completely infeasible at a large scale due to the lack of sufficient data for
model validation. The advantage of this study is that the MO-SUFI2 method accounts for all sources of
uncertainty expressed in terms of the p-factor and the r-factor, and can ultimately find the ranges of
these parameters. The ranges the model obtained helps to characterize the uncertainty of key outputs of

the model, e.g. AGB, under various cutting regimes.

A comparison of the four cutting regimes shows relatively similar spatial patterns, with a discernably
high level of productivity in northwest Germany and low values in central Germany. This corroborates
the results of Smit et al. (2008), where the largest amount of production was seen in the northwest part
of Germany. It also demonstrates that MONICA is able to capture the spatial dynamics of grassland
productivity. However, the magnitudes of our productivity estimates are not directly comparable with

the study of Smit et al. (2008), as their analysis was based on a combination of statistics and remote
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sensing-based variables. This is not comparable with our maps, which are based on simulations of
biophysical processes. It is worth mentioning that our simulations did not take into account the spatial
conditions of management treatments, such as cutting or fertilization time, amount of fertilizer, or
grassland species sown in the field, due to a lack of data at such resolution. Given the fact that similar
management treatments are assigned to all grids in our simulation, some discrepancies with the literature

and measurement values are expected.

Among the many factors which might have contributed to this remarkable degree of uncertainty, one
important fact is related to the lack of information on accurate cutting events in each grid, which varied
from one year to the next. Due to a lack of data at such detailed spatial and temporal levels for our
simulations, we assumed the same cutting dates for every year. This has a considerable impact on model
simulations. The more frequent cutting events in four/five cuts grasslands resulted in larger uncertainty
in the model prediction. Our paper has provided an initial model set-up as a baseline for considering

multiple variables simultaneously during model calibration.

4. Conclusion and future prospect

We have presented the first simulations of grasslands across with number of cutting events per growing
season the whole area of Germany. To the best of our knowledge, there is no study available that
compares grassland productivity in light of different numbers of cutting regimes over such a large
territory. We have concluded that, to obtain reliable estimates on grassland productivity, model
calibration based on both vegetation and soil-related components is essential, and should be more
prominently used in future studies. Further improvement of grassland simulations across large areas
requires (a) detailed information on cutting or grazing regimes and their spatial distribution and (b)
information on grassland species composition, which both could potentially be provided through remote
sensing (Griffiths et al., 2020; Lyu et al., 2020). Also here, strong interdependencies prevail, as
environmental conditions govern the emergence of different species communities, each of which then
inheres specific productivity levels and response patterns. Multi-objective calibration as presented here
will therefore also be essential for grassland models that include species composition dynamics.
Combining process-based grassland models for productivity and related water and nutrient fluxes with
species composition dynamics will enable addressing a larger variety of grassland production systems,
and related environmental responses in simulations, offering an even more realistic representation of

regional grassland production.
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