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Abstract 1 

The dynamics of grassland ecosystems are highly complex due to multifaceted interactions among their soil, 2 

water, and vegetation components. Precise simulations of grassland productivity therefore rely on accurately 3 

estimating a variety of parameters that characterize different processes of these systems. This study applied 4 

three calibration schemes – a Single-Objective (SO-SUFI2), a Multi-Objective Pareto (MO-Pareto), and, a 5 

novel Uncertainty-Based Multi-Objective (MO-SUFI2)– to estimate the parameters of MONICA (Model 6 

for Nitrogen and Carbon Simulation) agro-ecosystem model in grassland ecosystems across Germany. The 7 

MO-Pareto model is based on a traditional Pareto optimality concept, while the MO-SUFI2 optimizes 8 

multiple target variables considering their level of prediction uncertainty. We used measurements of leaf 9 

area index, aboveground biomass, and soil moisture from experimental data at five sites with different 10 

intensities of cutting regimes (from two to five cutting events per season) to evaluate model performance. 11 

Both MO-Pareto and MO-SUFI2 outperformed SO-SUFI2 during calibration and validation. The 12 

comparison of the two MO approaches shows that they do not necessarily conflict with each other, but MO-13 

SUFI2 provides complementary information for better estimations of model parameter uncertainty. We used 14 

the obtained parameter ranges to simulate grassland productivity across Germany under different cutting 15 

regimes and quantified the uncertainty associated with estimated productivity across regions. The results 16 

showed higher uncertainty in intensively managed grasslands compared to extensively managed grasslands, 17 

partially due to a lack of high-resolution input information concerning cutting dates. Furthermore, the 18 

additional information on the quantified uncertainty provided by our proposed MO-SUFI2 method adds 19 

deeper insights on confidence levels of estimated productivity. Benefiting from additional management data 20 

collected at high resolution and ground measurements on the composition of grassland species mixtures 21 

appear to be promising solutions to reduce uncertainty and increase model reliability. 22 

 23 

Keywords: Intensively managed grasslands; extensively managed grasslands; Grassland productivity; 24 

Pareto optimality. 25 
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1. Introduction 26 

Grasslands occupy 40.5% of the world’s total terrestrial area (White et al., 2000) and contribute greatly to 27 

terrestrial biodiversity and carbon storage, which accounts for approximately 28–37% of the global soil 28 

organic carbon pool (Lal, 2004). A recent study in tree-sparse grasslands such as California has 29 

demonstrated that grasslands are more reliable carbon sinks than forest and wetland ecosystems with respect 30 

to climate change (Dass et al., 2018). Economically less profitable than arable crops (Wimberly et al., 2017), 31 

permanent grasslands are usually cultivated where arable cropping is limited by, e.g. steep slopes, the risk 32 

of frequent flooding, adverse climatic or hydraulic conditions (Lei et al., 2016), and poor soils. In Germany, 33 

managed grassland areas cover more than 28% of agricultural land (Griffiths et al., 2020; Statistisches 34 

Bundesamt, 2019) and represent remarkable values for fodder production, biodiversity conservation, 35 

recreation, and ecosystem services. In fact, about 50% of plant species in Germany depend on grassland 36 

habitats (BFN, 2014). Grasslands also contribute to the replenishment of groundwater resources, as they 37 

allow more water to percolate into deeper soil zones compared to forests or cropland (von Wilpert et al., 38 

2016). Permanent grasslands (in the form of meadows or pastures), which comprise more than 90% of 39 

Germany’s grassland areas, have been under pressure from land use changes since at least 1990. Since then, 40 

the total area has been reduced by 12% (Statistisches Bundesamt, 2019) as a result of land use changes in 41 

favor of intensive agriculture. At the same time, low-productivity grasslands on marginal sites have been 42 

abandoned for economic reasons, threatening some rare plant communities (BFN, 2014). The various types 43 

of grassland in Germany nevertheless still provide a large range of ecosystem services and biodiversity, if 44 

managed appropriately. Therefore, preservation of grassland as an important part of agricultural land use in 45 

Germany remains of crucial importance, and a better understanding of their environmental functioning is 46 

required to manage these areas more sustainably, especially in the context of global warming. 47 

The dynamics of grassland ecosystems are highly complex, due to the multifaceted interactions among their 48 

soil, water, and vegetation components. Equipped with understanding of these interrelations, it is easier to 49 

design grassland management strategies that do not interfere with the provision of ecosystem services. Over 50 

the last few decades, various process-based agro-ecosystem models have been developed to simulate plant‒51 

soil‒water relations and to explore the productivity and functioning of grassland systems. Such model 52 

application studies have focused on different aspects, such as the spatial distribution of grassland 53 

productivity (Chang et al., 2015b; Zheng et al., 2020), the impacts of environmental factors and climate 54 

change on grassland productivity (Gomara et al., 2020; Graux et al., 2011), and their potential as sinks for 55 

carbon storage and the mitigation of greenhouse gas emissions (Chang et al., 2015a; Jones and Donnelly, 56 

2004; Sandor et al., 2018). In these studies, the most commonly simulated variables are aboveground 57 

biomass (AGB) or net primary productivity, providing a synthetic indicator to evaluate the productivity of 58 

grassland and the applied models were calibrated and validated based on vegetative variables, such as AGB. 59 
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owever, vegetative variables are tightly linked to water dynamics in soils constraining ecosystem 60 

productivity (Archontoulis et al., 2020; Tang et al., 2018), and thus a model calibrated using solely 61 

vegetation variables may not be sufficient to predict soil-related services or disservices and may result in 62 

unrealistic representations of soil processes. Including soil moisture as a constraint to plant growth in the 63 

calibration process is critical to add explanatory power to the plant-related target variables. The main 64 

difficulty in this context is the interdependency of soil water and vegetation dynamics and the simultaneous 65 

consideration of parameters and variables related to both vegetation and soil processes in the calibration. 66 

Multi-objective approaches help the model to simulate various observation data concurrently and close to 67 

reality (Houska et al., 2017), since, in contrast to single criterion calibration procedures, they also take into 68 

account the existence of compensating effects when calibrating the model. Considering multiple variables 69 

combined with global optimization routines/algorithms in calibration decreases the risk for the model getting 70 

trapped in local minima, which may lead to a better fit for one variable, but to an unsuitable parameter set 71 

representing other processes (i.e. right fit for wrong reason). To account for this feedback, it is crucial to 72 

implement methods for model calibration capable of taking into account information that describes the 73 

interconnected processes. In most studies with integrative aspects, different observation variables are 74 

combined as a single objective (SO) which subsequently forms a basis to estimate the model’s parameters. 75 

The multi-objective (MO) optimization perspective (Groh et al., 2018; Wöhling et al., 2015), which 76 

examines the trade-offs between different conflicting objectives, has received less attention in the 77 

application of grassland models, and to the best of our knowledge, we offer the first study of an integrative 78 

perspective in grassland simulations.  79 

Process-based agro-ecosystem modeling is based on the simultaneous simulation of different interconnected 80 

biophysical processes, which depends on various parameters describing behaviors of various conceptual 81 

processes and the way they relate to each other (Fenicia et al., 2007). Some model parameters are extremely 82 

difficult to measure or even cannot be directly measured and often have to be estimated inversely, through 83 

an optimization procedure. Such procedures are intended to minimize deviations between simulated and 84 

observed target variables, such as AGB, soil moisture (SM), or leaf nitrogen concentration. Since the 85 

processes in agro-ecosystem models are closely interlinked, these minima are often only local, and 86 

optimization procedures may reveal only one out of many existing minima, but not necessarily the global 87 

minimum (or maximum). This means that the parameter values identified are associated with high levels of 88 

uncertainty, which in turn may lead to poor model predictions. Reducing the uncertainty of these parameters 89 

requires methods which consider A) multiple components of the model in an MO calibration framework 90 

and B) quantification of the confidence level of output variables.  91 

MO optimization approaches use tradeoffs to determine a set of non-dominated parameters that cannot be 92 

improved for one objective without compromising the other objective. During optimization, these 93 

approaches incorporate multiple objectives on the basis of different information such as: 1) multi-variable 94 
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data representing different interrelated processes, 2) multi-site data, or 3) multi-response models considering 95 

independent criteria of one model aspect (Efstratiadis and Koutsoyiannis, 2010; Kamali et al., 2013). 96 

Therefore, instead of converging around a single optimum, MO approaches spread search in parameter space 97 

in a way to detect a number of feasible parameter sets (solutions) with acceptable trade-offs along the Pareto 98 

front (Proximedia, October 8, 2018). Given the fact that different parameters activate different processes in 99 

the model (Efstratiadis and Koutsoyiannis, 2010), exploring the trade-off between different objectives 100 

(considering various variables) assists models in finding a more realistic and robust parameter estimates. 101 

Furthermore, evaluating the trade-off among solutions located on the Pareto fronts provides additional 102 

indications on probable limitations of a model (Efstratiadis and Koutsoyiannis, 2010). For example, an 103 

irregular shape of a Pareto-front can be a sign for an ill-posed model, or a significant trade-off points to a 104 

probable ill model parameterization. A proper evaluation of these additional information obtained from MO 105 

approaches help modelers to better assessment of model performance and consistency and find robust 106 

solutions to reduce the uncertainty in the model. 107 

The most common algorithms for MO calibration include MO particle swarm optimization (Kennedy and 108 

Eberhart, 1995), MO genetic algorithm (Fonseca and Fleming, 1993), and MO complex evolution (Yapo et 109 

al., 1998). While most MO methods offer superior performance compared to SO calibration (Kamali et al., 110 

2013), they also suffer from their inability to provide information on the uncertainty of model predictions. 111 

Bayesian approaches can account for parameter uncertainty in optimization, and their superior performance 112 

vis-à-vis SO approaches has recently been demonstrated for eco-hydrological models (Tang et al., 2018; 113 

Wöhling et al., 2013) where mostly two variables (LAI and SM) have been considered. However, their 114 

application for calibration of grassland models have been limited mostly to SO approaches where the errors 115 

from different variables were aggregated to overall one single function (Höglind et al., 2016; Korhonen et 116 

al., 2018). The complex dynamics of grasslands, strongly vary depending on the types of their management 117 

(intensively and extensively managed grasslands), species composition and prevailing soil. Therefore, we 118 

assume that model calibration will benefit a lot from considering multiple key variables e.g. LAI as a model 119 

state variable, AGB and SM. Despite the importance, the current studies lack reflection on uncertainty-based 120 

calibration and parameter estimation approaches which capitalize on: 1) information that describes the 121 

multiple variables and find the trade-off among different variables; 2) the uncertainty ranges of each 122 

variable; and 3) the comparison of these approaches on intensively and extensively managed grasslands. 123 

In this paper, we aim to 1) implement an uncertainty-based MO calibration procedure to a process-based 124 

models simulation model for grassland (Nendel et al., 2011) to understand how it helps to improve the 125 

simulation of different soil and vegetation processes; 2) analyze the implications (scaling/uncertainty) 126 

derived from the simulation of managed grasslands in Germany, and use that information to quantify the 127 

level of uncertainty associated with biomass estimates across different regions of Germany. The method 128 

proposed and applied accounts for all sources of uncertainty, such as model input, model structure, model 129 
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parameters, and measured data, and does not disentangle different types of uncertainty. The suitability of 130 

the method is tested against data from grassland sites with two/three cutting events per growing season 131 

(extensively managed) and sites with four/five cutting events per growing season (intensively managed). 132 

Overall, five experimental sites located in different parts of Germany were selected. In this paper, we 133 

maintain our assumption that grassland management (i.e. intensively and extensively managed grasslands) 134 

relates directly to only the number of cutting events. 135 

 136 

2. Methodology 137 

2.1. Data sources 138 

Two data sets were used in this study. For the sensitivity analysis, model calibration and model validation, 139 

we used data from five experimental grassland sites that have been originally designed for different projects 140 

(see Table 1). The second data set includes national-scale soil and climate data for German-wide simulations 141 

of grasslands (see section 2.4 for details). 142 

The five experimental sites are: 1) Braunschweig (to understand the increasing importance of grassland 143 

areas for sustainable agricultural practice), 2) Rollesbroich and 3) Selhausen (long-term observation from 144 

lysimeters to investigate hydrosphere, biosphere and atmosphere interactions), 4) Bad Lauchstädt (to 145 

investigate the consequences of future climate scenarios for ecosystem functioning in different land-use 146 

types on large field plots), and 5) Gießen (a free-air carbon dioxide enrichment experiment to investigate 147 

the effects of multiple environmental factors on C3 plants, including the CO2 fertilization effect). These data 148 

had all been collected within different research projects. The temporal resolution of the data varied 149 

depending on the project, variable, and year. For SM, the temporal resolution of data were daily or weekly 150 

most of the time, whereas the temporal resolution of LAI and AGB varied from weekly to bi-monthly within 151 

growing season (Table 1). The sites are located in different parts of Germany (Fig. 1a), featuring different 152 

climatic conditions, cutting regimes, and soil types (Table 1). The climate data used for these experimental 153 

sites were obtained from the closest station from the German Weather Service (Deutscher Wetterdienst, 154 

DWD) to each site. The average yearly precipitation at these sites over 30 years during 1990–2020 varied 155 

from 494 mm yr-1 in Bad Lauchstädt to 910 mm yr-1 in Rollesbroich. The average annual air temperature 156 

ranged from 8.75 °C in Rollesbroich to 10.6 °C in Selhausen. 157 
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 158 

Fig. 1: a) Geographic location of the five experimental grassland sites selected for model calibration and 159 

validation and farm sites used for defining management for national-scale simulations; b) the eight natural 160 

units for Germany-wide simulation (NUnits 1-8) specifying the different landscape types across Germany 161 

that were used to compare grassland productivity at the regional scale. 162 

Farm sites 
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Table 1: Location and characteristics of grassland study sites. The numbers in brackets show the number of plots for which measurement data were 163 

available. LAI: leaf area index; AGB: above ground biomass; SM: soil moisture. The average yearly precipitation and temperature were obtained from 164 

DWD climate stations over 30 years during 1990–2020 165 

 

Site 
[Latitude, 

longitude] 

Number 

of cuts per 

season 

Years of 

available 

Data 

Measured variables 

(Temporal resolution) 
Soil type 

Precipitatio

n 

mm yr−1 

Temperature 

mm yr−1 
Sources 

C
al

ib
ra

ti
o
n

 

Rollesbroich [50.6,  6.3] Four cuts 2015-2018 
LAI, AGB (Bi-monthly) 

SM (Daily) 

Stagnic  

Cambisol 
910 8.75 

(Pütz et al., 

2016) 

Gießen1 [50.5,  8.7] Two cuts 1998-2018 
LAI, AGB (Bi-monthly) 

SM (Daily) 

Fluvic 

Gleysol 
624 9.93 

(Obermeier et al., 

2017) 

V
al

id
at

io
n

 

Gießen 2-3 [50.5,  8.7] Two cuts 1998-2018 
LAI, AGB (Bi-monthly) 

SM (Daily) 

Fluvic 

Gleysol 
624 9.93 

(Obermeier et al., 

2017) 

Braunschweig [52.3,10.4] Three cuts 2013-2018 LAI, SM (weekly) Albeluvisol 613 9.83 

(Agrometeorolog

ical Research 

Center (ZAMF)) 

Bad Lauchstädt 1-5 [51.4,11.9] Four cuts 
2015-2017 LAI, AGB (Bi-monthly) 

Haplic 

Chernozem 
494 9.93 

(Schadler et al., 

2019) Bad Lauchstädt 6-10 [51.4,11.9] Two cuts 

Selhausen [50.8,  6.5] Four cuts 2015-2018 
LAI, AGB (Bi-monthly) 

SM (Daily) 

Cutanic 

Luvisol 
674 10.60 

(Pütz et al., 

2016) 

 166 
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The soil data of each experiment have been measured within the mentioned projects (See Table 1) and 167 

became available for this study. More detailed information on the soil profiles is presented in Table S.1. 168 

Similarly, management data (cutting dates and fertilization) were recorded for these projects (Table S.2). 169 

The measured values for LAI (leaf area index) and AGB were available to evaluate simulations of vegetation 170 

dynamics. The SM values, measured at different depths across the soil profile (depending on the 171 

experiment), were used to evaluate simulations of soil water dynamics.. The grassland sites also differ with 172 

respect to the number of cutting events per growing season (Table 1). 173 

To simulate grassland production across Germany, we collected information on cutting dates from different 174 

grassland farms across Germany (Fig. 1). Daily records of minimum and maximum temperature, radiation, 175 

precipitation, wind speed, and relative humidity were obtained from the German Weather Service 176 

(Deutscher Wetterdienst, DWD) and interpolated in a 1 km2 grid as described in Zhao et al. (2015). Data 177 

were available for the period 1990-2018. The original soil data source is the soil map of Germany, at the 178 

scale of 1:200,000, differentiated by land use (BÜK200N, “Nutzungsdifferenzierte Bodenübersichtskarte”, 179 

German Federal Institute for Geosciences and Natural Resources (BGR, 1995). For input into the process-180 

based model, soil information was delineated according to DWD grids. The soil parameters required for 181 

model simulations included soil texture in mass fraction, as well as volumetric (%) soil water content at 182 

saturation, field capacity, and permanent wilting point. We simulated grassland types with different numbers 183 

(two, three, four, and five) of cutting events per growing seasons. For regional comparison of grassland 184 

production across country, the landscape of the country was divided into eight regions or natural units 185 

(NUnits 1–8) based on geomorphological, hydrological, and geological criteria (Fig. 1b and Table S.3) 186 

(DWD, 1994). In this paper, the grassland productivity of different natural units have been estimated from 187 

Germany-wide simulations.  188 

 189 

2.2. The grassland model 190 

The MONICA model is a process-based agro-ecosystem simulation model for simulating crop growth, water 191 

dynamics, and nitrogen dynamics for practical applications. It is an extended version of HERMES 192 

(Kersebaum, 2007) for the carbon cycle in soil and plants. The model’s code is generic, meaning that soil‒193 

plant‒water processes can be described using crop-, species-, and soil-specific parameters. MONICA has 194 

been tested for a variety of crops in Central Europe (Nendel et al., 2014; Stella et al., 2019), and its generic 195 

structure can accommodate grassland characteristics to some degree. Grass growth processes are simulated 196 

by dividing growth into six phenological stages, from emergence to senescence (Table S.4). The transition 197 

from one stage to another is driven by the accumulation of temperature sum above a base temperature. 198 

Owing to differences in the vegetation development of perennial and annual plants, some adaptations were 199 

required to achieve the desired level of model performance for perennial grasses, drawing on earlier model 200 

implementations that simulated grapevine growth (Nendel and Kersebaum, 2004).  201 

https://en.wikipedia.org/wiki/Geomorphological
https://en.wikipedia.org/wiki/Hydrological
https://en.wikipedia.org/wiki/Geological
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/carbon-cycle


10 

 

First, unlike annual crops, which are harvested once during the growing season, perennial grasses are often 202 

cut several times in a single growing season. Therefore, after each cutting, the growth stage of the plant is 203 

reinitialized to the leaf emergence stage. We added four options to determine the amount of stubble mass 204 

remaining after a cutting event: 1) percentage of stubble remaining on the field; 2) the amount of biomass 205 

(kg ha-1) remaining on the field; 3) grass height after cutting; and 4) the LAI value after cutting. 206 

Second, grasses survive from one year to another, going dormant each fall and regrowing each spring. The 207 

stolon of grasses provides new growing points during tilling each spring as well as after cutting. To 208 

incorporate this trait of grasses, the model defines a perennial reserve organ for grass plants. Each day, the 209 

potentially available carbohydrate from the reserve organ is calculated and added to the daily assimilate 210 

production. The day’s maintenance respiration costs and any assimilated loss due to growth-limiting factors 211 

are subtracted from the total; the remainder is the amount of carbohydrate available for regrowth. Two 212 

factors determine the contribution rate of the reserve organ during regrowth: 1) a coefficient called 213 

StageMobilFromStorageCoeff, which varies according to the developmental stage of the plant, and which 214 

is estimated during calibration; 2) a coefficient that modifies the contribution of the storage organ based on 215 

the average temperature of the day (Mitchell et al., 1995). Finally, the root systems of annual crops typically 216 

die after the growing season. For grasslands, however, to avoid unnatural accumulations of root mass in the 217 

soil the model uses the pre-defined pools in MONICA to simulate a small proportion (2-6%) of the root 218 

dying back every day, thus contributing to soil organic matter decomposition and mineralization. 219 

 220 

2.3. Model parameterization, sensitivity analysis, and calibration 221 

We followed three steps to simulate grassland productivity across Germany (Fig. 2). As is typical for 222 

environmental modeling, the first step was to conduct a sensitivity analysis to define the most sensitive 223 

parameters. MONICA has over 200 parameters describing different processes such as plant growth, soil 224 

water, and soil carbon turnover processes. Some of them relate to growth stages (Table S.4) and plant organs 225 

(e.g. root, leaf, stem, and stolon for grasslands). In this study we selected 111 parameters which were 226 

relevant for simulating vegetation and soil moisture components (Table S.5). The sensitivity analysis was 227 

conducted for the five experimental sites presented in section 2.1. Soil properties were considered only in 228 

the first step of sensitivity analysis and of course not during the calibration. The reason to include these 229 

parameters in sensitivity analysis was to reflect some knowledge on uncertainty due to soil heterogeneity 230 

which is important for simulation at large scales simulation with 1 km2 resolution. In fact, at such scale, the 231 

soil properties vary significantly at such spatial scale and its uncertainty should be considered. However, 232 

we did not use soil characteristics as parameters for calibration in any experimental results. 233 

Sensitivity analyses have already been implemented for MONICA in previous studies (Specka et al., 2015, 234 

2019), yet they have lacked analysis related to the new version of the model for perennial crops with newly 235 
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added parameters (Section 2.3.1). Having identified the most sensitive parameters, we implemented SO and 236 

MO calibration procedures (Section 2.3.2). The final parameter sets and their ranges were then used to 237 

simulate grasslands with different numbers of cuts per growing seasons (i.e. two, three, four, and five cuts) 238 

across Germany. 239 

 240 
Fig. 2. Schematic representation of the proposed three-step framework (sensitivity analysis, calibration, 241 

Germany-wide grassland simulation) for mapping grassland productivity under various cutting regimes. 242 

 243 

2.3.1. Sensitivity analysis 244 

We conducted sensitivity analysis for all five experimental grassland sites mentioned in Table 1. 245 

Accordingly, the soil and weather data used for each experiment have been explained in section 2.1.  Similar 246 

to methods widely-used in literature (Confalonieri et al., 2010), sensitivity analysis proceeded in two steps. 247 

The first step was to use a screening method to exclude non-influential parameters. The Morris method was 248 

selected for this purpose (Morris, 1991). In the process, parameter sensitivity is defined by making local 249 

changes at different points across possible parameter ranges. The main advantage of this method over 250 

variance-based methods (which are more reliable for ranking sensitivity) is that they require less 251 

computational effort in cases with huge numbers of parameters. Therefore, it provides a possibility to screen 252 

parameters and exclude those with non-influential effects. This subsequently reduces the number of 253 
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parameters when applying variance-based methods, such as the Sobol method (Sobol, 1967). The Morris 254 

method uses two measures – µ (the mean of the distribution of the elementary effects) and͖ 𝜎 (the standard 255 

deviation of the distribution of the elementary effects) to identify the sensitivity of parameters. To calculate 256 

µ and 𝜎, the method first calculates the Elementary Effect (EE), which is obtained from dividing the 257 

parameter space into p discrete levels. The model outputs are then calculated for r trajectories within the 258 

parameter space. EE for parameter i is defined as: 259 

  260 

𝐸𝐸𝑖 =
𝑓(𝑋1,..,𝑋𝑖−1,𝑋𝑖+∆,𝑋𝑖+1,..,𝑋𝑛)−𝑓(𝑋)

∆
,       (1) 261 

 262 

where ∆= 𝑝/(2(𝑝 − 1)). After repeating the procedure r times, the mean and standard deviation of EE is 263 

used as a measurement to evaluate the sensitivity of parameters. That is, we obtain the Morris measures of 𝜇 264 

and 𝜎 for each parameter i as: 265 

𝜇𝑖 =
∑ 𝐸𝐸𝑖𝑗

𝑟
𝑗=1

𝑟
          (2) 266 

and 267 

𝜎𝑖 = √
∑ (𝐸𝐸𝑖𝑗−𝜇𝑖)2𝑟

𝑗=1

𝑟
         (3) 268 

 269 

Based on the combination of 𝜎 and 𝜇, the parameters are grouped into three classes: 1) parameters with 270 

negligible effects (here, 𝜎 <0.05 and µ<0.05); 2) parameters with large linear effects without interactions 271 

(high 𝜎 with low µ); and 3) parameters with large non-linear and/or interaction effects. We excluded from 272 

subsequent analysis the parameters that fell into groups of parameters with negligible effects i.e. 𝜎 <0.05 273 

and µ<0.05.  274 

In the second step, the remaining parameters from the Morris method (group 2 and 3) were ranked to 275 

determine the contribution of each factor to the total variability. To do so, we used the Sobol variance-based 276 

approach. The probabilistic framework of this method decomposes the variance of the model output into 277 

fractions, which can then be attributed to inputs or sets of inputs. The method makes it possible to calculate 278 

two indices: 1) the main effect (ME) sensitivity index, which measures the direct effect of individual factors 279 

on the variance of the outputs:  280 

 281 

Main effect𝑖 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐸[𝑌𝑖𝑒𝑙𝑑| 𝑋𝑖])

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑌)
         (4) 282 

 283 

where 𝐸[𝑌𝑖𝑒𝑙𝑑| 𝑋𝑖] denotes the expected value of yield across all factors Xi, and 2) the total effect (TE) 284 

sensitivity index which corresponds to a single factor and the interaction of multiple factors: 285 

https://en.wikipedia.org/wiki/Variance
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 286 

Total effect𝑖 = 1 − 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐸[𝑌𝑖𝑒𝑙𝑑| 𝑋−𝑖])

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑌)
        (5) 287 

 288 

where 𝐸[𝑌𝑖𝑒𝑙𝑑| 𝑋−𝑖] is the expected value of yield across all factors except Xi.  289 

 290 

2.3.2. Model calibration 291 

We calibrated the model by using one SO and two MO calibration algorithms and then compared the results. 292 

The three optimization algorithms differ in their strategy for searching parameter ranges. To compare the 293 

performance of all three algorithms, we used three criteria: one to compare the simulated and observed 294 

variables and to identify the best-performing parameter set using relative root mean square error (rRMSE), 295 

and two additional criteria (p-factor and the r-factor) to show the goodness-of-fit and the level of uncertainty 296 

of the model. In all three algorithms and to evaluate the accuracy of the different calibration procedures and 297 

find the best performing models, we compared the observed and simulated values of three reference 298 

variables v (LAI, AGB, and SM) using rRMSE which is calculated as: 299 

𝑟𝑅𝑀𝑆𝐸𝑣 =
√

1

𝑛
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖,𝑣−𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖,𝑣)

2𝑛
𝑖=1

𝑆𝑡𝑑 (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑣)
                    (6) 300 

The respective error functions for the three reference variables in this study are 𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 , 𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵, and 301 

𝑟𝑅𝑀𝑆𝐸𝑆𝑀  for LAI, AGB, and SM.  302 

The performance of models regarding the level of uncertainty in the model were measured using the p-factor 303 

and the r-factor Criteria. The p-factor criterion represents the fraction of measured data bracketed by the 304 

95PPU uncertainty band and varies from 0 to 1, where 1 means that 100% of the measured data is bracketed 305 

by the model simulation (expressed as the 95PPU). Values around 0.5 are usually considered acceptable for 306 

crop simulation (Kamali et al., 2018). The r-factor criterion is the average width of the 95PPU band divided 307 

by the standard deviation of the measured variable, which is a measure of prediction uncertainty. The ideal 308 

value for r-factor is 0, with an acceptable practical value of around 2 for crop yields (Kamali et al., 2018). 309 

Detailed information describing this method can be found in Abbaspour (2015). 310 

The two experimental sites of Gießen1 (a site with two/three cuts per growing season) and Rollesbroich (a 311 

site with four/five cuts per growing seasons) were selected as calibration sites, because they both had 312 

measured variables for LAI, AGB, and SM. The parameter ranges obtained from the calibration sites were 313 

then transferred to other sites to test model suitability at the validation stage. The parameter sets obtained 314 

from the calibration procedure were then used to test the performance of the model in terms of simulating 315 

other variables in the validation sites with an independent dataset. 316 

 317 
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Single-objective uncertainty-based calibration (SO-SUFI2) 318 

This study used the sequential uncertainty fitting algorithm (SUFI-2) technique (Abbaspour et al., 2015) for 319 

SO calibration which considers on one variable at a time. The algorithm maps all uncertainties in the output 320 

on the parameter ranges. Uncertainty was quantified by the 95% prediction uncertainty (95PPU) calculated 321 

at the 2.5% and 97.5% levels of cumulative distribution of an output variable obtained using Latin 322 

Hypercube sampling in the parameters’ space. We started the SO-SUFI2 procedure with 1,000 parameter 323 

sets sampled from wide ranges in the first iteration. The p-factor r-factor, and rRMSE values were 324 

accordingly calculated. If they were not within the acceptable ranges (p-factor larger than 0.5 and r-factor 325 

between 0.9 and 2). The algorithm calculated a new range for each parameter, based on the comparison of 326 

simulated and observed variable e.g. the rRMSELAI of 1,000 samples. The new ranges of parameters were 327 

then used to create another 1,000 samples of parameter sets in the second iteration. We continued the 328 

iterations until we reached a compromised balance between the p-factor and the r-factor. In this paper, the 329 

best compromise between two criteria was reached after three iterations. The objective functions used in the 330 

second and third iteration were the same as the first iteration (rRMSE, p-factor, and r-factor). 331 

 332 

Multi-objective calibration based on Pareto optimality (MO-Pareto) 333 

The SUFI-2 algorithm was developed for SO calibration. The structure of the algorithm combines multiple 334 

objectives into one, and was not designed in a way to optimize multiple objectives at the same time 335 

(Abbaspour, 2015). In the case of multiple objectives, the algorithm calculates the average of different 336 

objectives and considers it as a single final value for optimization. We are interested in the simultaneous 337 

optimization of multiple objectives (𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 , 𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵 , and 𝑟𝑅𝑀𝑆𝐸𝑆𝑀). Therefore, we tested the 338 

suitability of the MO calibration approach, which is based on minimizing more than one objective function 339 

according to Pareto optimality concepts (hereafter MO-Pareto). The Pareto optimality concept provides a 340 

set of possible solutions based on the tradeoff among two or more error functions – that is, there is no unique 341 

set of optimal parameters, but a number of solutions exist in which it is not possible to improve one objective 342 

function without compromising at least one other. Such solutions are called Pareto, non-dominated, non-343 

inferior, or efficient solutions.  344 

The non-dominated solutions comprise a front called an optimal Pareto front (Fig. 3a), which divides the 345 

search space of solutions into feasible and infeasible regions. As shown in Fig. 3a (as an example), Solution 346 

1 has the lowest 𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 , but the highest 𝑟𝑅𝑀𝑆𝐸𝑆𝑀  among all solutions located on the optimal Pareto 347 

front. In contrast to Solution 1, Solution 2 has the lowest 𝑟𝑅𝑀𝑆𝐸𝑆𝑀  and the highest 𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵. Therefore, 348 

the two solutions are non-dominated vis-à-vis each other, meaning that one is ideal for one objective 349 

function and the other is ideal for another objective function. The MO-Pareto algorithm explores the search 350 

space of the parameters and aims to define the optimal Pareto front. The Pareto optimality conditions are 351 

defined as: 352 
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 353 

∀ 𝑣 = 𝐿𝐴𝐼, 𝐴𝐵𝐺, 𝑆𝑀:     𝑟𝑅𝑀𝑆𝐸𝑣(𝜃𝑖) ≤   𝑟𝑅𝑀𝑆𝐸𝑣(𝜃𝑗)         (7) 354 

∃ 𝑣 = 𝐿𝐴𝐼, 𝐴𝐵𝐺, 𝑆𝑀:  𝑟𝑅𝑀𝑆𝐸𝑣(𝜃𝑖)  <  𝑟𝑅𝑀𝑆𝐸𝑣(𝜃𝑗)       (8) 355 

 356 

 357 

Fig. 3: Illustrations of the MO optimization method based on Pareto-optimal concepts (MO-Pareto) for 358 

three objectives. In a), the optimal Pareto front divides the search space into feasible and infeasible regions; 359 

b) shows the schematic representation of ranking Pareto fronts used to measure the model uncertainty (MO-360 

SUFI2) by searching in two orthogonal dimensions i.e. Pareto-along and lateral search. 361 
 362 

The first expression divides the feasible parameter space into two sets of feasible (Pareto) and infeasible 363 

solutions. The second expression states that, in the absence of additional information, it is not possible to 364 

distinguish among any of the efficient solutions as being objectively better than any other.  The MO-Pareto 365 

algorithm considers only rRMSE to search among feasible solutions and find the optimal Pareto front. 366 

During the search, the algorithm does not take into account p-factor and r-factor (as the representative 367 

criteria in our study) to evaluate the model performance in terms of capturing uncertainty band. We here 368 

calculated p-factor and r-factor according to those non-dominated solutions located on the optimal Pareto 369 

front as a surrogate to parameter ranges. By calculating p-factor and r-factor, we tested if the parameter sets 370 

located on the optimal Pareto front yield satisfactory p-factors and r-factors or not. This provides a solid 371 

base to compare the performance of this technique with others in terms of capturing the uncertainty ranges 372 

of parameters. 373 

 374 

1 

2 

𝑟𝑅𝑀𝑆𝐸𝑆𝑀 

𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 

𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵 

𝑟𝑅𝑀𝑆𝐸𝑆𝑀 

𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 

𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵 

Dominated solutions 

Optimal Pareto front 

a) MO-Pareto b) MO-SUFI2 
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Novel uncertainty-based multi-objective SUFI-2 (MO-SUFI2)  375 

The MO-SUFI2 with v state variables (i.e. v objective functions) combines the Pareto optimality concept 376 

with the uncertainty-based concept of SO-SUFI2. During the search process, the algorithm not only 377 

considers all three variables, but also search parameters spaces strategically in a way that finds those ranges 378 

giving acceptable p-factor and r-factor values. The Pareto optimality concept focuses on considering 379 

multiple objectives during optimization, which when combined with the SO-SUFI2 concept in the novel 380 

MO-SUFI2 algorithm, makes it possible to find the uncertainty ranges of model parameters. This integrative 381 

perspective in MO-SUFI2 is possible by exploring the parameter space using two types of searching 382 

orthogonally to each other (Fig. 3b): 1) the Pareto alongside search, which identifies those non-dominated 383 

solutions that satisfy multiple objectives; and 2) the lateral search, which divides feasible solutions into sub-384 

solutions by defining multiple Pareto fronts and ranking them based on the distance from optimal Pareto 385 

front (Fig. 3b).  The ranking of candidate parameters allows to stratify the search space along lateral 386 

direction and adjust the ranges of the parameters until the satisfactory p-factor and r-factor values are 387 

achieved. We first start with defining rank-1 (which is the optimal Pareto front in MO-Pareto). We first start 388 

with separating parameter sets with rank-1 from all candidate sets using Equations 7 and 8. These sets are 389 

actually the optimal Pareto front already obtained in MO-Pareto. Having excluded them from the candidate 390 

parameter sets, we define rank-2 with the remaining sets using the same equations. The more specific 391 

stepwise procedure of the MO-SUFI2 algorithm is as follows: 392 

1) The MO-SUFI2 algorithm started with N numbers (here N=100) of parameter sets, i.e. feasible solutions 393 

stored in one main repository. 394 

2) The v objective functions, i.e.  𝑟𝑅𝑀𝑆𝐸𝐿𝐴𝐼 , 𝑟𝑅𝑀𝑆𝐸𝐴𝐺𝐵, and 𝑟𝑅𝑀𝑆𝐸𝑆𝑀 , were calculated for all N feasible 395 

solutions. 396 

3) The Pareto rules (Equations 7 & 8) were applied and the non-dominated solutions located on optimal 397 

Pareto fronts were selected. The solutions located on the optimal Pareto front were assigned to the first 398 

rank. 399 

4) The first-rank solutions were removed from the main repository. 400 

5) The Pareto rules were reapplied to the remaining solutions in main repository to identify a new set of 401 

non-dominated solutions, labeled as the second rank.  402 

6) Steps 4 and 5 were repeated until all N solutions were labeled with a rank, as illustrated in Fig. 3b.  403 

7) In solutions with the same rank, we took out 5% of those solutions with highest residual between 404 

objective functions, i.e. solutions that performed worse in at least one objective function.  405 

8) The p-factor and r-factor were calculated based on the first-rank solutions stored in the repository. If 406 

the p-factor and r-factor exceeded their pre-specified thresholds, the algorithm stopped and the p-factor 407 

and r-factor became the final values. In this paper, the threshold defined for the p-factor was a value 408 

above 0.5, with the r-factor varying between 0.9 and 2.0. If these conditions were not fulfilled, the 409 
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second-rank solutions were combined with solutions from the first rank and the p-factor and r-factor 410 

values were recalculated. The stepwise procedure of recalculating p-factor and r-factor was continued 411 

until the final p-factor and r-factor met the specified threshold for the p-factor and r-factor. 412 

 413 

2.4. The simulation of grasslands across Germany 414 

The parameters ranges obtained from MO-SUFI2 calibration were used to simulate the fresh AGB of 415 

grasslands across Germany. We simulated the MONICA model for all grids across Germany and calculated 416 

the annual amount of fresh AGB exported from the field/grid (hereafter Yield) as model output. The next 417 

step was to determine the spatiotemporal dynamics of grasslands and uncertainty levels for Yield estimation 418 

in Germany’s eight nature units (NUnits 1-8) during 1991-2018 (Fig. 1b). We extracted the productivity of 419 

grasslands for all grids within each natural units and then calculated the average fresh AGB. Simulations 420 

were conducted for four cutting regimes: two and three cutting events per year as representative of 421 

extensively managed grasslands and four and five cutting events as representative of intensively managed 422 

grasslands. We assumed fixed cutting dates across all grids, based on information collected from farmers 423 

throughout Germany (farm sites in Fig. 1). The amount of fertilization applied in the different cutting 424 

regimes was 30 kg N ha-1 at the beginning of the growing season and 15 kg N ha-1 five days after each cutting 425 

event (Table S.6). 426 

 427 

3. Results  428 

3.1. Sensitivity analysis 429 

The Morris sensitivity method for experimental sites did not show differences in the identified most sensitive 430 

parameters among case studies and the result for all were found to be similar to each other. The σ and μ 431 

indices were calculated according to daily information within this simulation time. Fig. 4a shows the 432 

maximum σ values during the growing season for different parameters in relation to the LAI, AGB, and SM 433 

state variables. We screened parameters based on the calculated 𝜎 and μ values and excluded those with 434 

values smaller than 0.05, owing to their negligible influence on simulating those state variables. As Fig. 4a 435 

shows, the most sensitive parameters varied depending on the state variable. For example, the soil texture 436 

parameters (Field Capacity and Pore Volume) and StageKcFactor were most relevant when simulating SM, 437 

whereas AGB and LAI were most affected by the parameter SpecificLeafArea. Additionally, some 438 

parameters, such as OrganGrowthRespiration and BaseDayLength, were sensitive for the simulation of all 439 

three state variables.  440 
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 441 
Fig. 4. a) Screening method: the sensitivity of different parameters to the LAI, AGB, and SM variables 442 

obtained from the Morris screening method. The results were obtained from those parameters with a 443 

maximum µ (i.e. maximum during the growing season) exceeding 0.05. b) Ranking method: the temporal 444 

variability of the ME (main effect) sensitivity index during the growing season (shown in terms of Julian 445 

days) obtained from the Sobol ranking method. Only parameters with maximum ME>0.05 are depicted. 446 
 447 
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We also looked at the relationship between μ and σ to check if there was any interaction between sensitive 448 

parameters. As shown in Fig. S.1, a high value of μ occurs with an equally high (or even higher) σ, meaning 449 

that nonlinear relationships exist among variables. This means that the most sensitive model parameters 450 

(parameters with high μ) also have high levels of interaction with other parameters. We did not further 451 

analyze the interaction of parameters in the first step of the sensitivity analysis, because in this paper the 452 

Morris screening method was only used as a preliminary screening analysis to eliminate those parameters 453 

with negligible effects, which was critical for reducing computational costs. Overall, after excluding 454 

parameters with 𝜎 and μ smaller than 0.05, 20 parameters (out of 111 initial parameters) were found to be 455 

sensitive. It is worth remarking that the model dimensionality was even higher than 20, because some 456 

parameters, such as OrganScenesenceRate and AssimilatePartitionCoeff, are not individual values but are 457 

an array or a matrix, as their values vary depending on the growth stage of the plant (Table S.4) and on the 458 

plant organ (root, shoot, leaf, and stolon). Here, we only presented the average values obtained from all 459 

organs and growing stages. 460 

The Sobol method was carried out next, based on the most relevant parameters obtained from the Morris 461 

method for each day during the growing season. Fig. 4b shows the daily temporal variation of ME during 462 

one growing season, revealing that the ranking of most parameters varied during growing seasons. 463 

Moreover, the number of sensitive parameters and their sensitivity differ depending on the state variables 464 

(LAI, AGB, or SM). Some parameters, such as SpecificLeafAreaIndex, were identified as the most sensitive 465 

parameter for simulating AGB and LAI during the growing season. However, other parameters, such as 466 

OrganMaintanenceRespiration, exhibited a higher sensitivity than MaximumAssimilationRate in early 467 

stages of the growing season, but at the end of the growing season, MaximumAssimilationRate was found 468 

to have been more sensitive than in early stages. This clearly demonstrates the temporal sensitivity of 469 

parameters during the observation/growing season.  470 

 471 

3.2. Single-objective calibration 472 

The results of calibration shows promising performance for both grassland sites with two/three cuts and 473 

four/five cuts (Figs. 5a and b). The best performing parameter set (the set with the lowest rRMSELAI) with 474 

an rRMSELAI of 0.67 for Gießen1 and 0.61 for Rollesbroich shows that MONICA is able to replicate the 475 

dynamics of LAI. The p-factors of 0.65 for Gießen1 and 0.61 for Rollesbroich indicate that over 60% of the 476 

observed values are covered by the 95PPU band. The r-factor values of 1.64 and 1.42 for Gießen1 and 477 

Rollesbroich respectively are within the range of acceptable values in the literature (Kamali et al., 2018). 478 

As seen in Figs. 5c-5h, the results are promising in both validation grassland sites with two/three cuts and 479 

four/five cuts. The rRMSELAI in validation sites exhibited an approximately similar performance to those of 480 

the calibration sites. The p-factors with values varying between 0.50 and 0.64 are close to the calibration 481 
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sites, with slightly outperforming values from Bad Lauchstädt1 and Bad Lauchstädt2. The r-factors 482 

reacheds their lowest value of 1.63 in Bad Lauchstädt1 and Braunschweig, with the highest value of 1.96 in 483 

Selhausen, both of which are quite close to the value of 1.42 at their corresponding calibration sites.  484 

 485 

 486 

Fig. 5. MONICA simulations of Leaf Area Index (LAI) dynamics based on data from the calibration (a, b) 487 

and validation (c-h) sites, after the model was calibrated only for LAI using SO-SUFI2, i.e. minimizing 488 

rRMSELAI. The left column shows the results for grassland sites with two/three cuts, the right column for 489 

sites with four/five cuts. The p-factorLAI, the r-factorLAI, and the relative root mean square error (rRMSELAI) 490 

are given as the performance indicators. 491 
 492 

We also checked the performance of the calibrated model (against LAI) in terms of simulating AGB and SM 493 

variables. The results for AGB and SM were not as robust as for LAI (Figs. S.2 and S.3). As shown in Fig. 494 

S.2, the rRMSEAGB values for all sites (with the exception of Rollesbroich and Selhausen) were above 2.0, 495 

which is considerably higher when compared with rRMSELAI. The p-factors with values smaller than 0.1 496 

confirmed the inadequacy of the calibrated model (against LAI) in terms of capturing observed AGB and 497 

SM within 95PPU (Figs. S2 & S3). In the next step, we calibrated the model based on AGB, and found that 498 

better performance could be achieved in terms of simulating AGB, but the calibrated model using AGB as 499 
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the target variable (i.e. minimizing rRMSEABG) this time did not perform adequately well for LAI (Table 2). 500 

For example in Gießen1, the rRMSEAGB improved from 2.42 to 1.01, but the rRMSELAI increased from 0.67 501 

to 1.30. A similar pattern emerged when we calibrated the model based on only SM (minimizing rRMSELAI) 502 

(Table 2). For example, one can see improvement in rRMSESM from 0.97 to 0.75 in Bad Läuchstadt1. Using 503 

the sum of the objective functions (rRMSELAI + rRMSEAGB + rRMSESM) did not improve the results either, 504 

as the optimization algorithm may have tended to optimize based on one criterion. In Bad Läuchstadt1, 505 

while integrating all three objectives improved the overall performance, the model performed worse in terms 506 

of rRMSELAI with a highest value of 0.89. This emphasizes the implementation of a multi-objective 507 

calibration procedure, which considers the impact of improving one objective at the expense of another 508 

objective function.  509 

 510 

3.3. Multi-objective calibration 511 

3.3.1. Traditional multi-objective calibration (MO-Pareto) 512 

Fig. 6a shows the results of the calibration using Gießen1 data. The non-dominated solutions on the optimal 513 

Pareto front indicate solutions for which improving one objective occurs at the expense of compromising 514 

another objective. The solutions located on the optimal Pareto front (optimal non-dominated solutions) were 515 

used to calculate the p-factor and r-factor values, and the best performing solution (i.e. the lowest rRMSE) 516 

was extracted from that. Comparing the dynamics of best-performing LAI, AGB and SM in MO- Pareto (Fig. 517 

6a) with SO-SUFI2 (Figs. 5a and S.3a) showed a lower rRMSEAGB (from 2.42 to 1.89) and rRMSESM (from 518 

0.77 to 0.72). However, no improvement was seen in rRMSESM as well as in the p-factor and the r-factor 519 

values. The model behavior in Braunschweig as validation site improved (Fig. 6b). The rRMSELAI with a 520 

value of 0.67 in the MO-Pareto approach decreased to 0.51 in SO-SUFI2. At the same time, rRMSESM values 521 

improved from 0.73 in the SO-SUFI2 calibration scheme to 0.66 in the MO-Pareto calibration scheme. We 522 

did not see improved values for p-factor and r-factor values when we applied the MO-Pareto calibration 523 

scheme, i.e. p-factor values were smaller than 0.5 and r-factor values were very low. This indicates that the 524 

non-dominated solutions located on the optimal Pareto front may not be representative of parameter 525 

uncertainty.  526 

 527 
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 528 
Fig. 6. MONICA simulations of multiple target variables, after the model had been simultaneously 529 

calibrated using the MO-Pareto calibration algorithm: a) calibration in MO-Pareto and b) validation in 530 

Braunschweig. The relative root mean square error (rRMSE), the p-factor and the r-factor are given as 531 

performance criteria. 532 
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Table 2. Comparing performance indicators of the rRMSE, the p-factor, and the r-factor based on utilizing different combinations of rRMSELAI, rRMSEABG, 533 
and rRMSESM as objective functions for model calibration (“min” here means “minimization”) 534 

Grassland site with two/three cuts  

 (calibration: Gießen1) 

Objective function rRMSELAI rRMSEAGB rRMSESM p-factorLAI p-factorAGB p-factorSM r-factorLAI r-factorAGB r-factorSM 

min [rRMSELAI] 0.67 2.42 0.76 0.65 0.25 0.27 1.64 1.55 0.05 

min [rRMSEAGB] 1.30 1.01 0.81 0.42 0.43 0.38 1.91 1.20 0.03 

min [rRMSESM] 1.22 1.81 0.66 0.41 0.35 0.44 1.81 1.33 0.40 

min [rRMSELAI + rRMSEAGB + rRMSESM] 0.72 2.2 0.78 0.55 0.40 0.40 1.7 1.25 0.23 

Grassland site with two/three cuts  

(validation: Braunschweig) 

min [rRMSELAI] 0.70 - 0.73 0.64 - 0.35 1.63 - 0.06 

min [rRMSEAGB] - - - - - - - - - 

min [rRMSESM] 0.81 - 0.63 0.51 - 0.51 1.50 - 0.90 

min [rRMSELAI + rRMSEAGB + rRMSESM] 0.75 - 0.8 0.51 - 0.38 1.45 - 0.89 

Grassland with four/five cuts 

(calibration: Rollesbroich) 

min [rRMSELAI] 0.61 1.7 0.70 0.61 0.12 0.62 1.42 0.72 0.05 

min [rRMSEAGB] 1.02 1.5 0.75 0.48 0.51 0.55 1.66 1.02 0.08 

min [rRMSESM] 0.88 1.91 0.61 0.31 0.12 0.64 1.78 0.99 0.30 

min [rRMSELAI + rRMSEAGB + rRMSESM] 0.65 1.63 0.75 0.44 0.23 0.66 1.70 0.88 0.23 

Grassland with four/five cuts 

 (validation: Bad Läuchstadt1) 

min [rRMSELAI] 0.77 3.64  0.50 0.005  1.63 0.89  

min [rRMSEAGB] 0.88 1.33  0.49 0.22  1.23 0.90  

min [rRMSESM] 0.87 2.98  0.51 0.23  1.22 1.11  

min [rRMSELAI + rRMSEAGB + rRMSESM] 0.89 1.40  0.50 0.10  1.30 1.12  

535 
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3.3.2. Uncertainty-based multi-objective SUFI-2 (MO-SUFI2) 536 

After the MO-SUFI2 calibration procedure was performed, based on the ranking of Pareto fronts, the 537 

results were compared with the outcome from SO-SUFI2 calibrated using min (rRMSELAI + rRMSEAGB 538 

+ rRMSESM) as an objective function as well as MO-Pareto algorithms. As shown in Fig. 7, the rRMSE 539 

values obtained from both MO algorithms outperformed SO-SUFI2 for all state variables at both types 540 

of grassland sites i.e. two/three cuts and four/five cuts. For example, the rRMSELAI in Braunschweig fell 541 

from 0.7 to 0.51 in MO-Pareto (Fig. 6) and 0.5 in MO-SUFI2 (Fig. 7a). Similarly, the rRMSELAI values 542 

in Bad Lauchstädt1 fell from 0.89 in the MO-Pareto calibration to 0.55 in MO-SUFI2. The MO-SUFI2 543 

also performed satisfactorily in terms of the two objective functions designed to capture the uncertainty 544 

bound, i.e. the p-factor and the r-factor. The p-factors for all three state variables at the calibration and 545 

the validation stage and for both in grasslands with two/three and four/five cutting events were above 546 

0.5; the r-factor varied between 0.85 and 1.3. 547 

 548 

 549 
Fig. 7. Comparing the results of SO-SUFI2 with MO-Pareto and MO-SUFI2 calibration at extensively 550 

managed (a-f) and intensively managed (g-l) grassland sites and at the calibration and validation sites.  551 

 552 
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Fig. 8 shows the final ranges of parameters obtained from MO-SUFI2 during calibration. For some 553 

parameters, such as AssimilationPartitionCoeff and OrganSenescenceRate, the ranges differed 554 

depending on the organ (root, shoot, leaf, and stolon) and growth stages (Fig. 8). The SenescenceRate 555 

values of root organs with values between 0.04 and 0.06 had the highest values compared with all other 556 

organs. Fig. 8 shows that parameter uncertainty is higher for AssimilationPartitionCoeff and 557 

MaximumAssimilatioRate compared with other parameters. Comparing the uncertainty ranges of 558 

AssimilationPartitionCoeff for different organs presented wider ranges for stolon compared with other 559 

organs for all six growth stages. This shows that reducing model uncertainty depends on detailed 560 

information on partitioning the assimilated carbon among different organs.  561 

 562 

 563 
Fig. 8. Final ranges of parameters obtained from the uncertainty-based multi-objective calibration, MO-564 

SUFI2.  565 

 566 
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3.4. Simulation of grasslands across Germany 567 

Figs 9a-d show the spatial distribution of annual AGB productivity (the sum of fresh AGB t ha–1 from 568 

cutting events within the growing season) under different cutting regimes across Germany. The annual 569 

productivity rates depicted below were obtained from the average AGB from 25 simulations executed 570 

with 25 parameter sets sampled within the ranges obtained from 95PPU (Fig. 9). The spatial variability 571 

showed a discernable high magnitude of productivity in northwest Germany, with values above 20 t ha–572 

1 yr–1, and low values in central Germany, with values lower than 12-15 t ha–1 yr–1 for the four cutting 573 

regimes. The difference in grassland productivity levels of different cutting regimes were well captured 574 

by the model, as grasslands with a larger number of cutting events per growing season exhibited higher 575 

productivity values in all parts of the country (Fig. 9a–d). Annual grassland productivity varied from 9 576 

t ha–1 in central and southern Germany during regimes with two cutting events (the lowest amount) to 577 

18 t ha–1 in the northwest of Germany with four cutting events (the highest amount). Eastern Germany, 578 

with productivity between 12 and 17 t ha–1, falls somewhere in between. Comparing the productivity of 579 

two with three cutting events revealed no remarkable spatial difference between the two types in terms 580 

of magnitude or spatial variability. The three-cut regime generated slightly higher productivity, mostly 581 

in the northwestern part of Germany. Similarly, the comparison of four with five-cut regimes exhibited 582 

a spatial difference mostly in the northwest of Germany (Figs 9 c and d).  583 

 584 

 585 
Fig. 9: Spatial distribution of average (AVG) grassland productivity during the period 1990–2018 for 586 

a) two, b) three, c) four, and d) five cutting events per growing seasons. The average was obtained from 587 

25 parameter sets within 95PPU uncertainty ranges; (e-h) spatial distribution of the standard deviation 588 

(STD) of yearly grassland productivity showing temporal variability for e) two, f) three, g) four, and h) 589 

five cutting events per growing seasons 590 

 591 
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The temporal dynamics of grassland productivity showed considerable variation from one year to the 592 

other (Figs. S.5-8). For all cutting regimes, the lowest productivity occurred in the years 1991, 1992, 593 

2010, and 2013, when the seasonal amount of precipitation also was lowest (Fig. S.4). The highest 594 

productivity was seen between 2000 and 2002, mostly in western and southern Germany, as well as in 595 

2007. The standard deviation (STD) of the time series over the 27 years of the study period (1991–2018) 596 

was calculated at the grid level to quantify the temporal variability of these grasslands’ productivity. 597 

The results also showed a higher STD in intensively managed grasslands compared to extensively 598 

managed grasslands. The STDs of grassland productivity were lower in western (<1.4 t ha–1) compared 599 

with eastern Germany (>2.0 t ha–1). 600 

 601 

 602 
Fig. 10. Comparison of the simulated 95PPU intervals of grassland productivity in eight nature units 603 

(Fig. 1) during the period 1990–2017. The band interval shows the uncertainty derived from the 95PPU 604 

calculations. The left (right) panels show the results for grassland with two/three (four/five) cuts. The 605 

blue line shows the yearly precipitation. 606 



28 

 

We also quantified the yearly 95PPU ranges of the grass productivity of different types of grasslands 607 

with different numbers of cutting regims in eight nature units (NUnits 1–8) across Germany (Fig. 10). 608 

Comparing productivity across these units revealed that NUnit 6 and NUnit 8 had the highest values, 609 

and NUnit 3 and NUnit 8 had the lowest compared with the others. We also found that the uncertainty 610 

of simulated grassland productivity (i.e. the upper and lower values of AGB obtained from the 95PPU 611 

uncertainty band) was remarkably larger in grasslands with four/five cutting events compared with in 612 

grasslands with two/three cutting events. The difference between the lower and upper uncertainty 613 

bounds of grassland productivity increased to 4.0 t ha–1 in grasslands with four/five cutting events, 614 

whereas this number was a maximum of 2.0 t ha–1 in extensively managed grasslands. 615 

 616 

4. Discussion 617 

4.1. Effects of the sensitivity analysis  618 

In this paper, we applied a two-step sensitivity analysis procedure, i.e. screening and time-varying 619 

ranking, which the literature has recommended as a systematic approach to sensitivity analysis (Pianosi 620 

et al., 2016). The time-varying ranking of parameters provided useful information for the prioritization 621 

of parameters to be estimated. Sensitivity analysis is a function of boundary conditions as well as time 622 

(Paleari and Confalonieri, 2016). Ignoring this fact can result in the misinterpretation of parameters. 623 

This is an important finding, which, although not new, still receives too little attention in many studies 624 

(Herman et al., 2013; Zhan et al., 2013), especially in grassland modeling studies. The temporal 625 

discretization of sensitive indices allowed for tackling the parameters which were influential for certain 626 

periods within the growing season and provided deeper insights on the model’s temporal behavior. 627 

Defining the most sensitive parameters of AGB or SM at only one certain stage of the growth season 628 

(e.g. the end of the season or the vegetation stage) may result in misleading results, because the 629 

sensitivity of some parameters may vary over the course of a growing season (Lamboni et al., 2009). In 630 

our case, we found that MaximumAssimilatioRate and OrganScenesenceRate played key roles at the end 631 

of every growing season. 632 

Our results correspond with previous investigations from Specka et al. (2015) for the same model, which 633 

showed that SpecificLeafAreaIndex was the most influential parameter for AGB and LAI; the leaf is the 634 

key organ for light interception and energy absorption (Wang et al., 2013). However, their ranking of 635 

common parameters in the study of Specka et al. (2015) and ours differed for two reasons. First, unlike 636 

their study, which focused primarily on annual crops, we focused on perennial grasslands. Moreover, 637 

our study included additional processes that described grassland dynamics in the new version of 638 

MONICA, as well as parameters such as StageMobilFromStorageOrgan. Therefore, our results 639 

provided base information on model parameterization for the future application of MONICA when 640 

simulating grasslands. 641 

 642 
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4.2. Insights concerning multi-objective calibration in the context of uncertainty 643 

The performance of grassland models in terms of simulating different variables have been investigated 644 

in literature in which the SO calibration approach has been applied for parameter estimation (Höglind 645 

et al., 2016; Korhonen et al., 2018). However, these studies did not take into account the trade-off of 646 

grassland model performances in terms of simulating multiple variables (i.e. objectives) together with 647 

uncertainty analysis (Höglind et al., 2020; Persson et al., 2019), which is an essential concept in 648 

uncertainty-based MO calibration. Those studies which presented results in terms of simulating multiple 649 

variables lacked additional information on the uncertainty ranges of model output variables. This study 650 

is one of the first attempt to consider both aspects for simulating grasslands.  Our results for example 651 

revealed that, when taking an SO calibration approach, improving one variable will occur at the expense 652 

of compromising another variable. This means that the SO calibration has a limited capacity to represent 653 

the multi-response dynamics in conceptual agro-ecosystem models; model calibration systems that take 654 

into consideration multiple components of interconnecting soil, plant, and water processes are required. 655 

This corroborates the findings of Groh et al. (2018), who found similar behaviors when identifying soil 656 

hydraulic parameters based on various observations of soil-related state variables. The traditional MO-657 

Pareto calibration improved model performance in terms of the three target variables, but also 658 

highlighted the weakness of the method in terms of quantifying the uncertainty ranges of parameters. 659 

Therefore, parameter optimization procedures should incorporate uncertainty into a model’s parameters 660 

(Tao et al., 2018), which is important when simulating natural processes to measure things such as 661 

grassland productivity over a large range of soil–climate situations – as our study did for Germany. 662 

We therefore proposed a novel uncertainty-based multi-objective calibration approach i.e. MO-SUFI2, 663 

which not only accounted for multiple variables, but also measured the associated uncertainty for each 664 

of them. The method searches parameter space in two directions. The first direction (the Pareto-along 665 

search in Fig. 3b) found non-dominated solutions located on the Pareto front, efficiently exploring the 666 

search space in light of different target variables. The second search, which was orthogonal to the first, 667 

ranked the previously discovered Pareto fronts and exploited those fronts which fulfilled the defined 668 

thresholds for the p-factor and the r-factor. Optimization methods based on ranking Pareto fronts have 669 

been used in other fields such as control systems (Ma and Qiu, 2014; Mittal and Singh, 2015), but to the 670 

best of our knowledge, have never been applied in the context of environmental studies. Here, we used 671 

this novel insight to calibrate agro-ecosystem models that work with water and vegetation variables; our 672 

goal is to improve the modeling results of future researchers and nudge the parameters of such models 673 

in a more meaningful direction. Overall, the comparison of the two MO approaches showed that they 674 

do not necessarily conflict with each other, but MO-SUFI2 provides complementary information that 675 

facilitates a better estimation of model parameters’ uncertainty. 676 

Using our novel MO calibration approach, we found the reasonable parameter ranges for the most 677 

sensitive parameters. The higher value of SenescenceRate for root organs value compared with all other 678 

organs is consistent with the results generated by Malik et al. (2018), who adopted a constant 5% 679 
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SenescenceRate for root organ throughout the growing season. Other organs (root, leaf, and stolon) all 680 

had a lower SenescenceRate (<0.02) during Stage 2 to Stage 5. Only Stage 6 (which is defined as the 681 

stage after maturity) showed high values for all organs. Overall, the ranges obtained for SenescenceRate 682 

during each stage were consistent with the natural growth of grass, demonstrating that MO-SUFI2 683 

performed satisfactorily in terms of capturing parameter uncertainty. 684 

4.3. Implications of uncertainty-based multi-objective calibration for Germany-wide 685 

simulations 686 

Information on grassland productivity or related environmental impacts is not currently available at high 687 

spatiotemporal resolution for Germany. Process-based simulation models can be used to fill this gap and 688 

deliver such information. However, since the required input for driving models at this scale is still 689 

fragmented, a range of assumptions need to be made prior to the simulation; this introduces uncertainty 690 

into the simulation’s results. One of the main sources of uncertainty comes from the simulation model 691 

itself. Process-based simulation models such as MONICA have been designed so as to reproduce the 692 

complex interactions of ecosystem processes, but their reliability depends on estimating a large number 693 

of parameters that describe different processes embedded in the model. With a limited set of 694 

observations available to parameterize and calibrate a model for all the different shades of managed and 695 

semi-natural grassland ecosystems that contribute to grass production for fodder or biomass, the 696 

calibration process requires special attention. So far, only a few detailed experiments are available. In 697 

most cases, experiments including observations on both water and nutrient cycles are even rarer, which 698 

makes it challenging to set up a model in a way that supports our understanding of how these unique 699 

ecosystems respond to changes in management and environmental conditions.  700 

Despite all these existing limitations, however, quantifying model uncertainty is an essential element of 701 

more robust and reliable decision-making regarding grasslands. Resorting to methods that separately 702 

quantify different sources of model uncertainty, such as climate data (Parkes et al., 2019), soil data 703 

(Folberth et al., 2016), model structure (Tao et al., 2018), or spatial scale (Ojeda et al., 2020), is 704 

unwieldy, and sometimes completely infeasible at a large scale due to the lack of sufficient data for 705 

model validation. The advantage of this study is that the MO-SUFI2 method accounts for all sources of 706 

uncertainty expressed in terms of the p-factor and the r-factor, and can ultimately find the ranges of 707 

these parameters. The ranges the model obtained helps to characterize the uncertainty of key outputs of 708 

the model, e.g. AGB, under various cutting regimes.  709 

A comparison of the four cutting regimes shows relatively similar spatial patterns, with a discernably 710 

high level of productivity in northwest Germany and low values in central Germany. This corroborates 711 

the results of Smit et al. (2008), where the largest amount of production was seen in the northwest part 712 

of Germany. It also demonstrates that MONICA is able to capture the spatial dynamics of grassland 713 

productivity. However, the magnitudes of our productivity estimates are not directly comparable with 714 

the study of Smit et al. (2008), as their analysis was based on a combination of statistics and remote 715 
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sensing-based variables. This is not comparable with our maps, which are based on simulations of 716 

biophysical processes. It is worth mentioning that our simulations did not take into account the spatial 717 

conditions of management treatments, such as cutting or fertilization time, amount of fertilizer, or 718 

grassland species sown in the field, due to a lack of data at such resolution. Given the fact that similar 719 

management treatments are assigned to all grids in our simulation, some discrepancies with the literature 720 

and measurement values are expected. 721 

Among the many factors which might have contributed to this remarkable degree of uncertainty, one 722 

important fact is related to the lack of information on accurate cutting events in each grid, which varied 723 

from one year to the next. Due to a lack of data at such detailed spatial and temporal levels for our 724 

simulations, we assumed the same cutting dates for every year. This has a considerable impact on model 725 

simulations. The more frequent cutting events in four/five cuts grasslands resulted in larger uncertainty 726 

in the model prediction. Our paper has provided an initial model set-up as a baseline for considering 727 

multiple variables simultaneously during model calibration.   728 

 729 

4. Conclusion and future prospect 730 

We have presented the first simulations of grasslands across with number of cutting events per growing 731 

season the whole area of Germany. To the best of our knowledge, there is no study available that 732 

compares grassland productivity in light of different numbers of cutting regimes over such a large 733 

territory. We have concluded that, to obtain reliable estimates on grassland productivity, model 734 

calibration based on both vegetation and soil-related components is essential, and should be more 735 

prominently used in future studies. Further improvement of grassland simulations across large areas 736 

requires (a) detailed information on cutting or grazing regimes and their spatial distribution and (b) 737 

information on grassland species composition, which both could potentially be provided through remote 738 

sensing (Griffiths et al., 2020; Lyu et al., 2020). Also here, strong interdependencies prevail, as 739 

environmental conditions govern the emergence of different species communities, each of which then 740 

inheres specific productivity levels and response patterns. Multi-objective calibration as presented here 741 

will therefore also be essential for grassland models that include species composition dynamics. 742 

Combining process-based grassland models for productivity and related water and nutrient fluxes with 743 

species composition dynamics will enable addressing a larger variety of grassland production systems, 744 

and related environmental responses in simulations, offering an even more realistic representation of 745 

regional grassland production. 746 

 747 

 748 
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