000906201 001__ 906201
000906201 005__ 20230123110558.0
000906201 0247_ $$2doi$$a10.1088/2053-1583/ac4958
000906201 0247_ $$2Handle$$a2128/30681
000906201 0247_ $$2altmetric$$aaltmetric:122400149
000906201 0247_ $$2WOS$$aWOS:000747468100001
000906201 037__ $$aFZJ-2022-01289
000906201 082__ $$a530
000906201 1001_ $$0P:(DE-HGF)0$$aSilva, Caio C$$b0$$eCorresponding author
000906201 245__ $$aSpatial variation of geometry, binding, and electronic properties in the moiré superstructure of MoS 2 on Au(111)
000906201 260__ $$aBristol$$bIOP Publ.$$c2022
000906201 3367_ $$2DRIVER$$aarticle
000906201 3367_ $$2DataCite$$aOutput Types/Journal article
000906201 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1644590791_25840
000906201 3367_ $$2BibTeX$$aARTICLE
000906201 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906201 3367_ $$00$$2EndNote$$aJournal Article
000906201 520__ $$aThe lattice mismatch between a monolayer of MoS2 and its Au(111) substrate induces a moiré superstructure. The local variation of the registry between sulfur and gold atoms at the interface leads to a periodic pattern of strongly and weakly interacting regions. In consequence, also the electronic bands show a spatial variation. We use scanning tunneling microscopy and spectroscopy (STM/STS), x-ray photoelectron spectroscopy (XPS) and x-ray standing wave (XSW) for a determination of the geometric and electronic structure. The experimental results are corroborated by density functional theory. We obtain the geometric structure of the supercell with high precision, identify the fraction of interfacial atoms that are strongly interacting with the substrate, and analyze the variation of the electronic structure in dependence of the location within the moiré unit cell and the nature of the band.
000906201 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906201 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906201 7001_ $$0P:(DE-HGF)0$$aDombrowski, Daniela$$b1
000906201 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b2
000906201 7001_ $$0P:(DE-HGF)0$$aJolie, Wouter$$b3
000906201 7001_ $$0P:(DE-HGF)0$$aFarwick zum Hagen, Ferdinand$$b4
000906201 7001_ $$0P:(DE-HGF)0$$aCai, Jiaqi$$b5
000906201 7001_ $$0P:(DE-HGF)0$$aRyan, Paul T P$$b6
000906201 7001_ $$0P:(DE-HGF)0$$aThakur, Pardeep K$$b7
000906201 7001_ $$0P:(DE-Juel1)130583$$aCaciuc, Vasile$$b8
000906201 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b9
000906201 7001_ $$00000-0002-0827-2022$$aDuncan, David A$$b10
000906201 7001_ $$0P:(DE-HGF)0$$aMichely, Thomas$$b11
000906201 7001_ $$0P:(DE-HGF)0$$aLee, Tien-Lin$$b12
000906201 7001_ $$0P:(DE-HGF)0$$aBusse, Carsten$$b13$$eCorresponding author
000906201 773__ $$0PERI:(DE-600)2779376-X$$a10.1088/2053-1583/ac4958$$gVol. 9, no. 2, p. 025003 -$$n2$$p025003$$t2D Materials$$v9$$x2053-1583$$y2022
000906201 8564_ $$uhttps://juser.fz-juelich.de/record/906201/files/Silva_2022_2D_Mater._9_025003.pdf$$yOpenAccess
000906201 909CO $$ooai:juser.fz-juelich.de:906201$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b2$$kFZJ
000906201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130583$$aForschungszentrum Jülich$$b8$$kFZJ
000906201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b9$$kFZJ
000906201 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906201 9141_ $$y2022
000906201 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906201 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000906201 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906201 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000906201 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-18$$wger
000906201 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$b2D MATER : 2021$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000906201 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$b2D MATER : 2021$$d2022-11-18
000906201 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906201 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906201 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906201 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000906201 980__ $$ajournal
000906201 980__ $$aVDB
000906201 980__ $$aUNRESTRICTED
000906201 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906201 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906201 980__ $$aI:(DE-82)080009_20140620
000906201 980__ $$aI:(DE-82)080012_20140620
000906201 9801_ $$aFullTexts