000906202 001__ 906202
000906202 005__ 20230123110558.0
000906202 0247_ $$2doi$$a10.1021/acs.jpcc.1c10625
000906202 0247_ $$2ISSN$$a1932-7447
000906202 0247_ $$2ISSN$$a1932-7455
000906202 0247_ $$2Handle$$a2128/32208
000906202 0247_ $$2WOS$$aWOS:000766228300023
000906202 037__ $$aFZJ-2022-01290
000906202 082__ $$a530
000906202 1001_ $$0P:(DE-HGF)0$$aKraus, Stefan$$b0$$eCorresponding author
000906202 245__ $$aUniaxially Aligned 1D Sandwich-Molecular Wires: Electronic Structure and Magnetism
000906202 260__ $$aWashington, DC$$bSoc.$$c2022
000906202 3367_ $$2DRIVER$$aarticle
000906202 3367_ $$2DataCite$$aOutput Types/Journal article
000906202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666957915_22685
000906202 3367_ $$2BibTeX$$aARTICLE
000906202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906202 3367_ $$00$$2EndNote$$aJournal Article
000906202 520__ $$aSandwich-molecular wires consisting of europium and cyclooctatetraene (Cot) were grown in situ on the moiré of graphene with Ir(110). The moiré templates a uniaxial alignment of monolayer EuCot nanowire carpets and multilayer films with the EuCot wire axis along the [001] direction of the Ir substrate. Using angle-resolved photoemission spectroscopy, we investigate the band structure of the wire carpet films. While π-derived bands were not observed experimentally, we find a flat band 1.85 eV below the Fermi energy. Using density-functional theory and X-ray photoelectron spectroscopy and replacing europium through barium in the sandwich-molecular wires, it is concluded that the flat band is derived from Eu 4f states weakly mixed with Eu 5d states and slightly overlapping with Cot π states. X-ray magnetic circular dichroism is employed to characterize the magnetic properties of the EuCot wire carpet films at low temperatures. Clear evidence for an easy-axis magnetization along the wires is found.
000906202 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906202 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906202 7001_ $$0P:(DE-HGF)0$$aHerman, Alexander$$b1
000906202 7001_ $$0P:(DE-HGF)0$$aHuttmann, Felix$$b2
000906202 7001_ $$0P:(DE-HGF)0$$aBianchi, Marco$$b3
000906202 7001_ $$0P:(DE-HGF)0$$aStan, Raluca-Maria$$b4
000906202 7001_ $$0P:(DE-HGF)0$$aHolt, Ann Julie$$b5
000906202 7001_ $$0P:(DE-Juel1)131010$$aTsukamoto, Shigeru$$b6$$ufzj
000906202 7001_ $$0P:(DE-HGF)0$$aRothenbach, Nico$$b7
000906202 7001_ $$0P:(DE-HGF)0$$aOllefs, Katharina$$b8
000906202 7001_ $$00000-0001-7480-1271$$aDreiser, Jan$$b9
000906202 7001_ $$0P:(DE-HGF)0$$aBischof, Ken$$b10
000906202 7001_ $$00000-0001-8395-3541$$aWende, Heiko$$b11
000906202 7001_ $$00000-0002-7367-5821$$aHofmann, Philip$$b12
000906202 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, Nicolae$$b13$$ufzj
000906202 7001_ $$0P:(DE-HGF)0$$aMichely, Thomas$$b14
000906202 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.1c10625$$gp. acs.jpcc.1c10625$$n6$$p3140–3150$$tThe journal of physical chemistry <Washington, DC> / C$$v126$$x1932-7447$$y2022
000906202 8564_ $$uhttps://juser.fz-juelich.de/record/906202/files/EuCotGrIr110_Manuscript_resub_tm.pdf$$yPublished on 2022-02-07. Available in OpenAccess from 2023-02-07.
000906202 8564_ $$uhttps://juser.fz-juelich.de/record/906202/files/acs.jpcc.1c10625.pdf$$yRestricted
000906202 909CO $$ooai:juser.fz-juelich.de:906202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131010$$aForschungszentrum Jülich$$b6$$kFZJ
000906202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130513$$aForschungszentrum Jülich$$b13$$kFZJ
000906202 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906202 9141_ $$y2022
000906202 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000906202 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000906202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000906202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11
000906202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000906202 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906202 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906202 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906202 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000906202 980__ $$ajournal
000906202 980__ $$aVDB
000906202 980__ $$aUNRESTRICTED
000906202 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906202 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906202 980__ $$aI:(DE-82)080009_20140620
000906202 980__ $$aI:(DE-82)080012_20140620
000906202 9801_ $$aFullTexts