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Introduction xi

Introduction

Screw structures are common in nature. They can be found everywhere, from galactic to

microscopic scales. Notable examples are the Double Helix Nebula [1], seashells, horns,

flowers, light-harvesting complexes of green plants, DNA molecules, and many others.

Therefore, it is natural that we find helical order also on the atomic scale, most prominently

as spin arrangement in magnetic materials.

Nowadays it seems incredible, but before the end of the 1950s, it was thought that

the magnetic moments in solids can be ordered only in the simple collinear structures —

ferromagnetic and antiferromagnetic. However, neutron scattering experiments have shown

that MnO2 has a different type of spin arrangement unseen before — a helical spin struc-

ture. This prompted scientists to search for similar spin structures in a wide variety of

materials, including both insulators and conductors. It became obvious that a helix is the

most fundamental spin structure that includes, as limiting cases, the ferromagnetic and

antiferromagnetic states.

Helimagnetic spin order may arise from the frustration among various superexchange

interactions. A simple collinear order cannot always satisfy all exchanges in the system,

which leads to the formation of a noncollinear long-periodic structure as a kind of energy-

minimizing compromise. Exchange interactions can be divided into symmetric and chiral,

arising in systems characterized by the absence of an inversion center. The former is the

topic to be dealt with in the present thesis.

Often, microscopic theories describing inherently quantum exchange interactions in real

systems are extremely complex. Neutron spectroscopy, allowing the direct study of magnetic

excitations in a system, is an indispensable tool for testing such models, thereby stimulating

their further development.

The results obtained during the work on this thesis are likely universal for a broad

class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon

interactions experimentally with accessible spectroscopic methods. At the same time, here

we demonstrate that the pseudo-Goldstone magnon gap in helimagnets, first measured in
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our work, can leave measurable signatures in the low-temperature macroscopic properties

of the material, such as thermal transport and specific heat.

We also performed careful measurements of the metallic helimagnet FeP whose spin

structure is described by an exotic “double-helix”. The results of our measurements should

stimulate theoretical work on the construction of a model describing the complex magnetic

dynamics in this system, which is probably a combination of the localized and itinerant

magnetic effects.

Layout of the thesis

Chapter 1 starts from the general introduction into the basics of helimagnetism. The main

things are discussed, such as the types of helimagnetic order, the nature and fundamental

differences between symmetric and chiral helimagnets. After a brief introduction to the

theory of spin waves, a derivation of the dispersion of spin waves in symmetric helimagnet

is given in the framework of the linear approximation.

Chapter 2 deals with basic aspects of neutron scattering. Here the theoretical ideas and

important formulas needed to understand the neutron scattering method and, in particular,

neutron spectroscopy are considered. It also gives a brief insight into the production and

detection of neutrons. Particular attention is paid to the main neutron instruments used in

the work on this thesis, such as triple-axis and time-of-flight spectrometers.

Chapter 3 contains an exhaustive description of our current results on the central project

of this thesis – the bond-frustrated helimagnet ZnCr2Se4. We investigated the full spin-

wave spectrum of the material in the entire reciprocal space by means of inelastic neutron

scattering and estimated the exchange interactions with an accuracy up to the fourth-nearest

neighbors. It is shown that the pseudo-Goldstone modes, first measured in our work, have

an energy gap, the theoretical description of which requires taking into account physics

beyond the linear spin-wave approximation. Thus, they serve as a tempting way to study

magnon-magnon interactions using available spectroscopic techniques. Using triple-axis and

time-of-flight spectrometers, a systematic study of the magnetic field dependence of the low-

temperature magnon spectrum of ZnCr2Se4 was carried out. The nonmonotonic character

of this dependence was revealed in the vicinity of the recently proposed quantum critical

point. A theoretical explanation of the obtained field dependence is a challenge for theorists

working in the field of spin waves. Finally, the contribution of the magnetic structure and

dynamics to the low-temperature macroscopic parameters of the material is discussed. The

data obtained in this research should be applied not only to simple helimagnets but also to

a much wider class of materials in which the magnetic propagation vector is spontaneously
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chosen from the set of structurally equivalent alternatives at the transition to a magnetically

ordered state.

However, the complex unit cell of the pyrochlore sublattice formed by the S = 3/2

magnetic Cr3+ ions in the spinel structure leads to multiple spin-wave modes that compli-

cate the theoretical calculations. It is therefore important to repeat the experiment on a

helimagnetic compound with a simpler structure. In Chapter 4, after introducing the sample

properties, we present the results of mapping low-energy dispersion in the layered iron oxide

Sr3Fe2O7. The S = 5/2 magnetic moments of Sr3Fe2O7 can be regarded as classical, and

therefore one can expect well-developed soft modes with a small spin gap. The structure

of Sr3Fe2O7 is simple tetragonal, with only one magnetic ion per unit cell, which simplifies

spin-dynamic calculations, in contrast to the pyrochlore sublattice of ZnCr2Se4. The data

presented in the chapter, measured in only a partially domain-selected state, do not allow

us to unambiguously judge the presence of pseudo-Goldstone modes in the system but serve

as a solid foundation for further measurements.

Chapter 5, after a brief review of current knowledge of iron monophosphide, presents the

detailed neutron scattering investigation of its low-energy magnon spectrum. The material is

interesting for its exotic “double-helix” spin structure. A simple model is proposed to simulate

the spin structure and magnetic excitations in FeP within the local spin approximation.

The proposed model reproduces quite well the main details of the experimental spectrum;

nevertheless, there are some differences, which may indicate the insufficiency of the localized

spin approximation for a detailed description of the system and the possible need to take

into account the influence of itinerant magnetic effects.
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Chapter 1

Introduction to helimagnetism

1.1 New type of magnetic ordering

Until the middle of the last century, it was assumed that there are only two types of magnetic

order in solids — ferromagnetic and antiferromagnetic. This statement was based on the

available neutron diffraction data. In all compounds known at that time, the magnetic unit

cell either coincided with the crystalline one (ferromagnets) or was a multiple of 2, 4, 8, and

so on (antiferromagnets). However, in 1958, at the International Congress on Magnetism in

Grenoble, France, Nagamiya gave a talk in which he predicted a helicoidal magnetic order

in MnO2 [2]. This prediction was confirmed by recent puzzling neutron diffraction data that

Erickson discussed with Yoshimori during a private communication [3]. He discovered that

the magnetic Bragg peaks are located not at the symmetrical points of the Brillouin zone but

at the incommensurate positions near the structural peak. This indicates that the studied

compound has a long-period magnetic structure, with a period not related to the period

of the crystal lattice. The theory developed by Yoshimori [3] provided an interpretation of

the MnO2 data. It turned out that the diffraction data can be successfully described by a

screw-type structure with a pitch of 7c/2. Yoshimori found that the spins located in one ab

plane of this crystal point in the same direction, perpendicular to the c axis. When moving

from one plane to the next, this direction changes by an angle of 129◦ (= 5π/7). Following

Yoshimori, this type of spiral rotation is called the proper screw structure Fig. 1.1 (a).

The existence of a helicoidal structure becomes obvious if we assume the existence of

anisotropic exchange interactions between the atomic spin moments of the nearest and

further neighbors. If we now assume that the exchanges between the nearest and the

next-nearest neighbors along a certain direction in the crystal have opposite signs, then

the helicoidal ground state is naturally obtained by minimizing the energy. Soon after the
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b)a) c) d) e) f)

Figure 1.1: Basic types of modulated spin structures. (a) Proper screw, (b) conical screw, (c) transverse conical,

(d) cycloidal, (e, f) transverse and longitudinal spin density wave.

discovery of a new helicoidal type of ordering in MnO2, neutron diffraction experiments

revealed many compounds with magnetic peaks at incommensurate positions of reciprocal

space. Shortly after the publication of Yoshimori, Kaplan’s paper [4] appeared with a simple

interpretation of the neutron diffraction lines of chromium. It is worth noting here that

Shibatani [5] soon developed Overhauser’s [6] idea and defined the sinusoidal spin structure

in chromium as a spin density wave. Around the same time, Villain [7] predicted the

possibility of realizing helicoidal order using the molecular field approach.

Despite the fact that scientists have been studying helimagnetic structures for more

than seventy years, interest in them continues to this day. In recent years, interest in

noncollinear magnetic structures has increased markedly due to advances in the physics of

multiferroics [8].

Helicoidal structures belong to a wider class of so-called modulated magnetic structures.

These structures can be represented as long-period modulation of simple magnetic struc-

tures — ferromagnetic and antiferromagnetic. Some of the basic long-period modulated

structures are shown schematically in Fig. 1.1. The arrows indicate the directions of the

spin moments of the atoms lying on the ferromagnetic planes perpendicular to the direction

of modulation. In all the above structures, the phase difference for two adjacent planes is

always constant [9]. Each long-period structure is characterized by a wave vector K, which

is responsible for the translational properties of the system. The translation vector of the
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modulated structure can be represented as

K = K0 − k, (1.1)

where K0 is the reciprocal lattice vector, and k is the modulation vector. If we apply all the

operations of the crystal symmetry group to the vector K, then we get a star of the wave

vector [9]. Considering that all the wave vectors of the star are equivalent, the magnetic

moment of the atom in the n-th cell of the crystal can be represented as

Mn =
∑

L

eiKLtnML, (1.2)

where the summation is over all rays of the star KL and tn is the vector of translation into

the n-th cell.

Despite the fact that several pairs of magnetic satellites are often observed in neutron

diffraction experiments, in most cases, this means that several types of magnetic domains

are present in the sample. Each of these domains is modulated in only one direction and is

characterized by a pair of vectors K and −K. Exceptions are some rather exotic structures

in which the existence of a multi-k structure is assumed. All modulated structures shown

in Fig. 1.1 are single-k and are described by a special case of expression (1.2):

Mn = M1eiktn + M∗1e−iktn , (1.3)

where the magnetic moment of the atom in the first unit cell M1 in general is a complex

number. The exact form of it determines the type of the modulated structure.

1.2 Symmetric and chiral helimagnets

There are several microscopic mechanisms responsible for the modulation of magnetic

structures. In the following, we will confine ourselves to a discussion of helimagnets, which

are the main content of this work, but many concepts are also applicable in the case of

systems with spin density wave order.

All helimagnets can be divided into two classes – symmetric and chiral, depending on

the modulation mechanism. The first class includes systems in which the helimagnetic

order of the spins is due to a competition between symmetric exchange interactions and is

realized in crystals with an inversion center. For insulators and semiconductors, this is most

often a result of frustration among different isotropic superexchange interactions between

localized spins. In the case of systems with both localized spins and itinerant electrons (for

example, rare-earth metals), these are Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions
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Figure 1.2: Comparison of symmetric and chiral helimagnets.

due to the interaction of magnetic moments mediated by conduction electrons. Symmetric

helimagnets are often called Yoshimori-type, after Akio Yoshimori who was the first to

give a comprehensive theoretical description [3]. The mechanism leading to the formation

of a helicoidal order as a result of the competition of symmetric exchanges between the

nearest and the next nearest neighbors in a centrosymmetric system of spins is schematically

shown in Fig. 1.2. Ferromagnetic exchange J1 < 0 between nearest neighbors favors the

co-aligned ordering of spins, while antiferromagnetic J2 > 0 exchange between the next

nearest neighbors tends to order the spins antiparallel. By minimizing the Hamiltonian of

the system, we find that the ground state is a helix with a pitch angle cos−1(−J1/4J2). If the

ratio of the exchange interaction parameters is | − J1/4J2| ≥ 1, the system falls down in a

simple collinear state.

Several years after the discovery of helimagnetism in centrosymmetric crystals,

Dzyaloshinsky [10] found another class of helimagnetic structures stabilized by the antisym-

metric Dzyaloshinsky-Moriya (DM) interaction [11]. Moriya showed that the microscopic

mechanism of antisymmetric exchange is spin-orbit interaction [12]. The antisymmetric DM

exchange between spins at positions i and j is Di j ·Si ×S j term in the expression for the free

energy of the system. The constant vector Di j is called the DM vector, and χ i j = Si×S j is the

spin chirality. In systems with an asymmetric electronic structure, the spin-orbit interaction

leads to a nonzero contribution from the DM interaction. The antisymmetric coupling can
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manifest itself only in systems that do not have an inversion center, while in crystals with a

higher symmetry, this coupling vanishes. The DM term favors the canted arrangement of

spins and therefore can lead to the helical spin arrangement. Let us turn again to Fig. 1.2

and consider a simple case of the formation of a ferromagnetic spiral due to antisymmetric

exchange. The contribution of symmetric ferromagnetic exchange J < 0 between nearest

neighbors to the energy of the system is minimal for co-aligned spins. At the same time, the

antisymmetric interaction Di j ·Si×S j, since it includes the vector product of spins, prefers the

mutually perpendicular orientation of the nearest-neighbor spins. Thus, the helical ground

state with the pitch angle tan−1(Di j/J) is a kind of compromise between symmetric and

antisymmetric exchanges. The exact direction of the DM vector Di j determines the chirality

of the spiral.

Regardless of the mechanism of formation, the helicoidal state is always characterized by

broken chiral symmetry. The concept of chiral symmetry breaking implies that simultaneously

with the broken inversion symmetry (P), the combination of time-reversal symmetry (T )

with any true spatial rotation (R ) is not broken. Despite the obvious similarity in the

magnetic structure, symmetric and chiral helimagnets differ in the level at which the chiral

symmetry is broken. In the case of chiral helimagnets, this occurs already at the level of the

Hamiltonian, since chirality χ i j is odd under the parity transformation (P) but even under

time reversal (T ). Therefore, the magnetic structure is forced to break the chiral symmetry.

On the other hand, in the Yoshimori type helimagnets, chiral symmetry is not broken at the

level of the Hamiltonian. Instead, the helimagnetic structure spontaneously breaks the chiral

symmetry. Another obvious difference, already laid down at the level of the Hamiltonian,

is the lifting of the degeneracy between left- and right-handed helices in chiral systems.

Thus, the magnetic structure of chiral helimagnets is protected by the chirality of the crystal,

while symmetric helimagnets do not have such protection and are easily fragmented into

many domains of different chirality. It is also worth noting the difference in the shape of

the magnon dispersion curves in the two types of systems, schematically shown in the third

column in Fig. 1.2. While the magnon dispersion in symmetric helimagnets has anomalies

at the positions of the propagation vectors ±Q, the magnon dispersion in chiral helimagnets

does not have such anomalies.

1.3 Helical spin ordering in symmetric helimagnets

Following Nagamiya [2], to obtain an expression for the helical spin ordering, consider a

system in which classical spins sit on a Bravais lattice with one spin per unit cell. Here
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we neglect anisotropy energy and will take into account only Heisenberg exchange forces

between separate spins. The exchange energy between spins Sm and Sn at the positions Rm

and Rn has the form:

− 2J(Rmn)Sm · Sn (Rmn = Rm −Rn). (1.4)

Here we assume that the interaction is symmetric: J(−Rmn) = J(Rmn). In order to obtain a

helical ordering, it is important to notice that the interaction potential is not confined to the

nearest neighbors. Let us assume that one atom is at the origin, J(Rn) = 0 if Rn = 0, and the

total number of atoms is N . The Fourier transform of the exchange parameters and spins are

J(q) =
∑

n

J(Rn) exp (−iq ·Rn), (1.5)

Sq = N−1/2
∑

n

Sn exp (−iq ·Rn). (1.6)

The total exchange energy of the system

−
∑

m

∑

n

J(Rmn)Sm · Sn (1.7)

can be written as

−
∑

q

J(q)Sq · S−q (1.8)

To minimize the Eq. (1.7) or (1.8), we have to assume the condition S2
n = const = S2 for all

n. First we can impose a milder condition

∑

n

S2
n = const, (1.9)

or, in Fourier components,

∑

q

Sq · S−q = const. (1.10)

Considering the condition (1.10) to minimise the expression (1.8) we need to keep only the

q at which J(q) attains its maximum. If we denote this q as Q, we can write the minimum

of (1.8) in the form

−J(Q)(SQ · S−Q + S−Q · SQ). (1.11)

Now, the expression for Sn can be obtained from (1.6):

Sn = N−1/2[SQ exp (iQ ·Rn) + S−Q exp (−iQ ·Rn)]. (1.12)
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Or, in components:

Snx = Acos (Q ·Rn +α),

Sny = B cos (Q ·Rn + β), (1.13)

Snz = C cos (Q ·Rn + γ),

where A, B,α,β , and γ are arbitrary constants. These equations represent a general elliptic

helical ordering of spins with wave vector Q. To satisfy the condition S2
n = const = S2, spin

Sn rotating must describe a circle at the position Rn. If we choose the z-axis perpendicular

to the plane in which the spin rotates, the equations (1.13) will transform in

Snx = S cos (Q ·Rn +α),

Sny = S sin (Q ·Rn +α), (1.14)

Snz = 0.

These equations represent a helical order of spins on a lattice and the corresponding spin

structure is called the screw structure after Yoshimori [3]. Expression (1.14) describes a

screw structure with an arbitrary angle between the direction of the screw axis and the spin

rotation plane. A special case of such a spin structure is a proper screw structure [Fig. 1.1

(a)] in which Q is perpendicular to the rotation plane. It is worth mentioning the cycloidal

structure [Fig. 1.1 (d)] in which they are coplanar.

The helical spin structure is a rather general form of a spin structure. It contains both

ferromagnetic (Q = 0) and antiferromagnetic (Q at the edge of the Brillouin zone) orderings

as limiting cases. An important feature of the helical spin structure is that its period is in no

way related to the period of the host crystal lattice.

1.4 Spin waves

The central topic of this thesis is neutron scattering by spin waves in helimagnets. This

section discusses the main features of spin waves in a solid. For a comprehensive treatment

of a spin-wave theory, see Keffer [13].

1.4.1 Spin deviations

Let us consider a ferromagnetic arrangement of localized spins on a Bravais lattice, meaning

one atom per unit cell. Assume that each ion on a lattice has spin quantum number S, and

spin angular momentum ħh
Æ

S(S + 1). Quantum mechanics states that the component of
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spin angular momentum measured along any direction has the value MSħh, where MS =

S, S − 1, ...,−S. It is common to choose the z-axis as the direction of quantization. In a

ferromagnet at zero temperature, all spins are aligned, and MS = S. The departure of MS

from the MS = S value is called a spin deviation.

Spin deviation in a solid can be represented as a sum of deviations caused by a set of

traveling sinusoidal waves. These waves are called spin waves. It was first shown by Bloch

that the states near the ground state of a ferromagnet can be approximated by superpositions

of these sinusoidal spin waves [14]. The spin wave is quantized and its energy is nħhω, where

ω is the angular frequency of the wave, n is an integer number. An elementary excitation

described by the quantum of the spin wave energy ħhω is called a magnon.

1.4.2 Linear spin-wave theory

To apply a spin-wave theory to a Heisenberg ferromagnet, take the Hamiltonian of the

magnetic system in the form

H = −
∑

l l ′
J(l− l′)Sl · Sl ′ , (1.15)

where Sl is the spin angular momentum operator of the atom l in units of ħh, J(l−l′) = J(l′−l)

is the exchange integral, and J(0) = 0 is by definition. The Hamiltonian, written in the form

(1.15) assumes that J > 0 ensures the minimal energy of a system for co-aligned spins. In

the case of an antiferromagnet, J < 0 minimizes the energy.

Denote the operators of the x , y , and z projections of the spin angular momentum Sl as

S x
l , S y

l , and Sz
l . For a moment, let us constrain our attention to one particular atom l and,

for simplicity, drop the subscript l. Define the ladder operators as

S+ = S x + iS y , S− = S x − iS y . (1.16)

If |MS〉 stands for the eigenstate of Sz with eigenvalue MS, then

S+ |MS〉=
Æ

(S −MS)(S + MS + 1) |MS + 1〉 , (1.17)

S− |MS〉=
Æ

(S + MS)(S −MS + 1) |MS − 1〉 . (1.18)

Rewrite this using the spin-deviations operator n̂ = S − Sz, with the quantum numbers

n = S −MS:

S+ |n〉=
p

2S
p

n

√

√

1− n− 1

2S
|n− 1〉 , (1.19)

S− |n〉=
p

2S
p

n + 1

s

1− n
2S
|n + 1〉 . (1.20)
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Thus S+ converts the state |n〉 characterised by the spin deviation n to the state |n− 1〉 and

S− converts |n〉 to |n + 1〉. Using the harmonic-oscillator operators a+ and a acting as

a |n〉=
p

n |n− 1〉 , (1.21)

a+ |n〉=
p

n + 1 |n + 1〉 , (1.22)

we can rewrite (1.19) and (1.20) as

S+ =
p

2S f (S)a, S− =
p

2Sa+ f (S), (1.23)

where f (S) ≡
Æ

1− (a+a/2S). These expressions represent the mapping from the boson

creation and annihilation operators to the spin operators and were developed in 1940 by

Holstein and Primakoff [15].

To make a linear approximation, first we need to expand f (S) in powers of 1/S:

f (S) =

√

√

1− a+a
2S

= 1− a+a
4S

+ O(
1

S2
). (1.24)

In the framework of the linear approximation we restrict ourselves to the first term in the

expansion (1.24). Now the spin angular momentum operators for the atom l can be written

as

S+
l =

p

2Sal , S−l =
p

2Sa+
l . (1.25)

The approximation we have made is equivalent to neglecting terms (n−1)/2S and n/2S

in (1.19, 1.20). Thus it is seen that the linear approximation is well suited for small spin

deviations, i.e. n� S. It is exactly true for operator S+ acting on states |0〉 and |1〉 and

for operator S− acting on state |0〉. As the spin deviations increase, the accuracy of the

approximation decreases. When n reaches the S value, the linear approximation becomes

completely inapplicable, and the action of the S+ and S+ operators leads to the generation

of nonexistent states.

In order to obtain an expression for the Hamiltonian (1.15) in the linear approximation,

in addition to operators S+
l and S−l , we need an expression for Sz

l . Since Sz
l |n〉= (S−n) |n〉=

(S − a+
l al) |n〉, taking into account (1.25) we obtain:

Sz
l = S − 1

2S
S−l S+

l . (1.26)

1.4.3 Spin waves in ferromagnets and antiferromagnets

Now we can write the product Sl · Sl ′ using S+
l , S−l , and Sz

l operators and substitute it into

the Hamiltonian (1.15):

H = −
∑

l l ′
J(l− l′)(

1

2
S+

l S−l ′ +
1

2
S−l S+

l ′ + Sz
l Sz

l ′). (1.27)
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To obtain this expression, we took into account that J(0) = 0, and any two operators Sl and

Sl ′ commute with each other. Spin waves are introduced by the following Fourier expansions

al =N−1/2
∑

q

exp(iq · l)aq, (1.28)

a+
l =N−1/2

∑

q

exp(iq · l)a+
q , (1.29)

where the summation is performed over all wave vectors q within a Brillouin zone of the

reciprocal lattice. We shall refer to aq and a+
q as magnon annihilation and magnon creation

operators, respectively. Substituting expressions (1.25),(1.26), (1.28), and (1.29) into

(1.27), we can obtain the required expression for the Hamiltonian:

H = H0 +
∑

q

ħhωqa+
q aq, a+

q aq = n, (1.30)

where

H0 = −S2NJ (0) = −S2N
∑

ρ

J(ρ), (1.31)

ħhωq = 2S(J (0)− J (q)), (1.32)

J (q) =
∑

ρ

J(ρ)exp(iq ·ρ), (1.33)

ρ = l− l′. (1.34)

The term H0 in Hamiltonian (1.30) is the energy of the ground state in which all M = S.

The second term is the sum of spin waves with wave vectors q located within a Brillouin

zone, the energy of each of which is ħhωq and (1.32) is the dispersion relation for spin waves.

Let us consider the simple case of a ferromagnetic chain with interactions only between

the nearest neighbors. Assuming that the exchange integral has a constant value, the

ferromagnetic magnon dispersion [Fig. 1.3 (a)] relation can be written as

ħhωq = 4JS(1− cos qa). (1.35)

And in the long wavelength limit, it transforms to

ħhωq = 2JSq2a2 = Dq2, (1.36)

where D is called the spin-wave stiffness constant. The dispersion (1.35) with the dispersion

relation ħhωq = ħh2q2/2m for a free particle of the mass m shows that a magnon with a long

wavelength behaves like a particle of effective mass m∗ = ħh2/4JSa2.

Similar to spin waves in ferromagnets, in the case of antiferromagnets, exchange inter-

actions should lead to the excitation of spin waves. However, here we are faced with the
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Figure 1.3: Spin wave dispersions in (a) ferromagnetic and (b) antiferromagnetic chains. The exchange

integrals are constant and the only nearest neighbours interaction is assumed.

fundamental problem of the unknown ground state. While in the first case the state at 0 K in

which all spins are co-aligned is the eigenfunction of the exchange Hamiltonian, in the case

of a ferromagnet there is no such unambiguity. Many states are very close in energy and

have zero total spin. Each of these states separately is not an eigenfunction of the exchange

Hamiltonian and only their combination determines the true ground state. One way to work

around this problem is as follows. The state with the minimal classical energy is chosen

as the basis for constructing spin waves. This state is determined by minimizing the spin

Hamiltonian in which the spin operators are replaced by classical vectors. Subsequent calcu-

lations lead to zero-point corrections which, in turn, allow the properties of the approximate

ground state to be calculated.

When constructing the theory of spin waves in antiferromagnets and ferrimagnets, it is

natural to choose the ordered state of alternately directed spins as an approximate ground

state. In what follows, the system is considered as two ferromagnetic sublattices, in each of

which the excitation of spin deviations is considered similar to the case of a ferromagnet.

Then, following the standard Holstein-Primakoff scheme, the bosonization of the spin angular

momentum operators and the transition from direct to momentum space are carried out.

The canonical Bogoliubov transformation is used to diagonalize the resulting Hamiltonian

and obtain the spin-wave dispersion relations.

In the simple case of a one-dimensional antiferromagnet, the dispersion relation of

magnons is

ħhωq = 4JS |sin qa| . (1.37)



12 Chapter 1. Introduction to helimagnetism

This dispersion curve is schematically plotted in Fig. 1.3 (b). In the long wavelength limit,

its behavior is linear:

ħhωq = 4JS |qa| , (1.38)

in contrast to ferromagnetic magnons, which exhibit quadratic dispersion in the vicinity

of the Brillouin zone center. The dispersions (1.35) and (1.37) are schematically plotted

in Fig. 1.3. In contrast to spin waves in a ferromagnet, in the vicinity of a zone center,

dispersion of the antiferromagnetic magnons is linear.

1.4.4 Spin waves in helimagnets

Now we are ready to consider the spin-wave theory for helimagnets. Let us consider a lattice

with inversion symmetry and one magnetic ion per structural unit cell. Suppose, there is

some anisotropy energy that distinguishes the Z axis, which we will take as the quantization

axis. The spin Hamiltonian has the form:

H = −gµBH0

∑

l

Sz
l − 2

∑

l>l ′
J(l− l′)Sl · Sl ′ + D

∑

l

(Sz
l )2, (1.39)

where l and l ′ depict the magnetic ion sites. The first term is the Zeeman energy, and the

applied field H0 is along the Z direction. The second term is the Heisenberg exchange energy,

and D is the uniaxial magnetocrystalline anisotropy parameter.

The spiral can be described as

SX
l = S sinθ cos (Q · l); SY

l = S sinθ sin (Q · l); SZ
l = S cosθ , (1.40)

with θ the cone angle of Fig. 1.1 (b), and with the axis of the cone, Q pointed along the Z

direction. The absolute value of Q measures the pitch of the spiral. The antiferromagnetic

spiral of Fig. 1.1 (a) is the special case of (1.40) with θ = π/2.

To consider spin waves similarly to the case of a ferromagnet, we introduce a new rotating

coordinate system, axis ζ of which is co-directed with the equilibrium spin direction at each

magnetic site:

Sξl = (SX
l cos (Q · l) + SY

l sin (Q · l)) cosθ − SZ
l sinθ ,

Sηl = −SX
l sin (Q · l) + SY

l cos (Q · l), (1.41)

Sζl = (SX
l cos (Q · l) + SY

l sin (Q · l)) sinθ + SZ
l cosθ .

In the new coordinate system, spin deviations are introduced identically to the ferromagnetic

case and, in the linear approximation have the form:

Sζl = S − a+
l al ; S+

l =
p

2Sal ; S−l =
p

2Sa+
l . (1.42)
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Further, following the standard procedure, we must substitute expressions (1.42) into

Hamiltonian (1.39). After passing to momentum space, the resulting Hamiltonian can be

brought into the form:

H = C3 +
∑

q

Aqa+
q aq +

∑

q

(
1

2
Bqaqa−q +

1

2
B∗qa+

q a+
−q), (1.43)

with

C3 =− gµBH0NS cosθ − NS2J (Q) sin2 θ − NS2(J (0)− D) cos2 θ , (1.44)

Aq =gµBH0 −
1

2
S(1− cosθ)2J (Q + q)− 1

2
S(1 + cosθ)2J (Q− q)

− S sin2 θ(J (q)− D) + 2S sin2 θJ (Q) + 2S cos2 θ(J (Q)− D), (1.45)

Bq =− 1

2
S sin2 θ(2J (q)− J (Q− q)− J (Q + q)− 2D). (1.46)

Here J (q) is given by (1.33).

As the next step, the Hamiltonian (1.43) must be diagonalized to be transformed into a

sum of harmonic-oscillator Hamiltonians with no interactions between the oscillators.

The canonical Bogoliubov transformation yields:

H =C3 −
1

2

∑

q

Āq +
∑

q

(α+q αq +
1

2
)εq, (1.47)

εq =[(Ā2
q − |Bq|2)

1
2 + Hq], (1.48)

Hq =
1

2
(Aq − A−q), (1.49)

Āq =
1

2
(Aq + A−q), (1.50)

where the summation is over the entire first Brillouin zone.

Since the Bogoliubov transformation preserves Bose’s commutation rules, the eigenvalues

nq of α+q αq must be 0, 1, 2, 3, and so on. Thus, the energy eigenvalues are given by

En1,...,nN
= C3 −

1

2

∑

q

Āq +
∑

q

εq(nq +
1

2
). (1.51)

It should be noted that due to the various transformations used to obtain Hamiltonian (1.47),

the spin waves obtained in this way do not have an obvious connection with the spin

deviations. However, despite the loss of the simple connection with a spin, it is customary

to refer to all magnetic excitations in ordered magnets as spin waves or magnons.

In the classical limit, the ground state is found by minimizing C3. From (1.44) it follows

that minimization of C3 requires a maximum value of J (Q). The angle of the cone θ is
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determined by condition ∂ C3/∂ θ = 0. In the absence of anisotropy, θ = π/2 and the energy

of the classical ground state is given by the expression

(Ee)classical = −NS2J (Q). (1.52)

Consider a special case of θ = π/2 and H0 = 0. The spin-wave energies can be deduced

from (1.48) as

ħhωq = 2S[J (Q)− 1

2
(J (Q + q) + J (Q− q))]

1
2 [J (Q)− J (q) + D]

1
2 . (1.53)

To have θ = π/2, the uniaxial anisotropy D must be positive. Since the maximum value

of J (q) is reached at q = Q, it can be seen from (1.53) that the minimum value of the

dispersion is at q = 0. This gapless mode corresponds to a uniform rigid rotation of all spins

in the ordering plane and is called a phason [16]. In the vicinity of q = ±Q, the spin waves

dispersion has local minima, the nonzero energy of which is due only to the presence of

anisotropy. These two modes are due to spin fluctuations out of the ordering plane. All three

modes in the absence of anisotropy are Goldstone modes associated with the spontaneous

breaking of continuous symmetry in spin space by a helical long-range order. In the presence

of a small easy-plane anisotropy, the modes at ±Q acquire gaps, while the central mode

remains gapless.

It is important to note that the dispersion relation (1.53) is given in a rotating coordinate

system. The transition to the laboratory system will lead to a shift of the dispersion curve by

vectors Q and −Q.

A schematic illustration of the dispersion of spin waves in symmetric and antisymmetric

helimagnets is shown in Fig. 1.4. We considered a proper screw spin structure (θ = π/2) on

a simple tetragonal lattice with one magnetic ion per crystallographic unit cell. In the case

of symmetric helimagnet, we limited ourselves to only two exchanges between the nearest

and the next-nearest neighbors along the c axis, J1 and J2 [see Fig. 1.2]. To introduce the

frustration of exchange interactions in the c direction, exchange integral J1 was chosen

ferromagnetic, and J2 – antiferromagnetic. To model a helimagnet with DM interaction

leading to helimagnetism we introduced the ferromagnetic J between nearest neighbors,

and D interaction competing to it as shown in Fig. 1.2. To stabilize the spins in the c plane,

a nonzero positive anisotropy was introduced along the c axis.

In both cases, the classical ground state and the spectrum of spin waves were calculated

within the framework of the linear spin wave theory using the SpinW software. To trace the

evolution of the dispersion curves, I fixed the values of the exchange integrals between the

nearest neighbors and gradually increased the absolute values of the competing exchanges.

Zero values of J2 and D correspond to a simple ferromagnetic ground state with q = 0. In
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Figure 1.4: Evolution of the dispersion curves for symmetric and antisymmetric helimagnets with increasing

competition between exchange interactions leading to the formation of a helix. Angle φ is the angle of rotation

of the spin direction at the transition between the nearest planes in the direction of the spiral propagation.

Dispersion curves are modeled using SpinW software [17].

the case of symmetric helimagnet, the formation of a spiral ground state occurs only when

the threshold value of the exchange integrals ratio |J1| < 4|J2| is reached. With a further

increase in J2, the helical pitch Q increases, and the corresponding pitch angle changes as

cos−1(−J1/4J2). When J2→∞ the pitch angle and the helical pitch tend to π/2 and π/2a,

respectively. In the case of the antisymmetric helimagnet, the formation of a helicoidal

ground state occurs immediately when a nonzero value of D appears and the pitch angle

is determined by tan−1(D/J). The values of the helical pitch and the pitch angle when D

tends to infinity coincide with the values for the symmetric case. A characteristic feature

of the dispersion curve of symmetric helimagnet is the presence of anomalies at q = ±Q,

which is absent in the antisymmetric case. The presence of these local minima is described

by the previously obtained dispersion relation (1.53).

Neutron scattering experiments make it possible to directly measure the dynamic cor-

relation function Sαβ(q,ω). It contains information on the nature and properties of spin

excitations in the sample and is defined as the Fourier transform of the space and time

correlation function:

Sαβ(q,ω) =
1

2πħh

∫ ∞

−∞
d t
∑

ρ

〈Sα0 (0)Sβρ(t)〉ei(ωt−q·ρ), (1.54)

where α and β label Cartesian axes and 〈...〉 denotes a ground-state average. The terms

with α = β = z lead to a correlation function 〈Sz
0(0)Sz

ρ(t)〉 that is independent of time

and therefore generate elastic scattering. They are sometimes called longitudinal terms.
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Figure 1.5: Inelastic neutron scattering spectra for the symmetric (left) and antisymmetric (right) helimagnets

(see text). The energy resolution is simulated by the convolution of the dynamical correlation function

Sαβ(q,ω) with a Gaussian function. The thin lines represent the dispersion curves. The spectrum is calculated

with SpinW.

The terms with α,β = x , y give rise to inelastic neutron scattering and are referred to as

transverse terms. The off-diagonal terms cancel out Sαβ(q,ω) = 0 for α 6= β , see Ref. [18].

In our case, the role of the ordered spin direction z plays ζ and one-magnon excitations

occur in the fluctuations polarized transverse to this direction. The transverse dynamical

correlations at T = 0 are given by

Sξξ1M =
S̃
2
|uq + vq|2δ(ω−ωq),

Sηη1M =
S̃
2
|uq − vq|2δ(ω−ωq).

(1.55)

The delta function in (1.55) leads to the appearance of sharp peaks at the points determined

by the dispersion relationωq. The effects of intensity smearing due to two-magnon processes

are taken into account in S̃, the value of which is less than S by the value of the corresponding

two-magnon corrections. In the case of zero anisotropy D, functions uq and vq determining

the scattering intensities are given by

uq = coshθq; vq = sinhθq; 2θq = Bq/Aq. (1.56)

Here Aq and Bq are given by (1.45, 1.46) with θ = π/2.

The neutron spectra of spin waves in simulated symmetric and antisymmetric helimagnets

are shown in Fig. 1.5. In both cases, the spectrum consists of two gapless Goldstone modes

emanating from the vectors Q and −Q.

A characteristic feature of the spectrum of symmetric helimagnet is the M-shape of the

central part of the spectrum. The nature of this lies in the form of the dispersion curve, which

has two local minima spaced by vectors Q and −Q from the central Goldstone mode. We
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will find similar spectra further, in the chapters devoted to symmetric helimagnets ZnCr2Se4
and Sr3Fe2O7. The dispersion curve for an antisymmetric helimagnet does not have such

anomalies, which accordingly affects the neutron spectrum.

1.4.5 Interactions between spin waves

Deriving the dispersion relation for a ferromagnet, Bloch considered a single spin wave in a

system of perfectly aligned spins [14]. He argued that at low temperatures the eigenstate of

a ferromagnet should be very close to a linear superposition of noninteracting spin waves,

which is exactly what the linear theory of spin waves gives. The first to test Bloch’s hypothesis

was Bethe [19], who considered a linear chain with S = 1/2. Dyson [20] was the first to

tackle the difficult problem of extending calculations to the three-dimensional (3D) case.

Dyson identified two reasons, and two corresponding interactions between spin waves,

indicating that the consideration of a linear combination of noninteracting spin waves is

not entirely correct. The so-called kinematic interaction occurs because spin-wave states

containing more than one spin wave do not form an orthogonal set. The effect of this

interaction can be presented as follows. Each excited spin wave decreases the total Sz of

the system by one unit ħh. If 2NS spin waves are excited in the system, this will lead to a

complete reverse of the magnetization of the system. Spin waves in the system cannot be

excited infinitely because of the limited value of S. To take this into account, a repulsive

kinematic interaction was introduced. The fact that this interaction is repulsive prevents the

accumulation of spin waves at a given spin site.

The reason for the dynamic interaction is that the states containing more than one spin

wave do not diagonalize the exchange Hamiltonian. This interaction leads to small shifts in

the energies of individual spin waves in the presence of other spin waves. This interaction

is attractive since the energy required to reverse a spin is less if the neighboring spins are

already partially rotated.

Since, in the framework of the linear theory of spin waves, we deliberately restrict

ourselves to only linear terms in expansion (1.24), we obtain spin waves that do not interact

with each other. This expansion itself is possible only if the kinematic interaction can be

neglected. To establish a connection between Dyson’s dynamic interaction and the Hamilto-

nian of a system, it is necessary to consider the nonlinear terms in (1.24). After making the

appropriate transformations, the final Hamiltonian will include coupled spin-wave operators

describing processes involving several magnons, and therefore magnon-magnon interac-

tions. The three- and four-magnon terms in the Hamiltonian play an important role in the

relaxation and renormalization of spin wave frequencies [21].
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Chapter 2

Neutron scattering

2.1 Introduction

2.1.1 Basic properties of thermal neutrons

Neutron scattering is a powerful technique for the investigation of the structure and dynamics

of condensed matter. The neutron was discovered in 1932 by James Chadwick, and almost

immediately physicists began to develop the fundamentals of neutron diffraction. With the

advent of nuclear reactors, high neutron fluxes became available, which contributed to the

development of spectroscopy methods. The advantage of using neutrons stems from their

basic properties. Some of them are listed in Table 2.1.

The value of the neutron mass leads to several very important consequences that make

it an ideal probe for studying condensed matter physics. To produce thermal neutrons

one needs to moderate fast neutrons from a reactor or spallation source. The mass of the

neutron is almost equal to the proton’s one. It means that they can be thermalized by the

Quantity Value

Mass, m 1.675 · 10−27 kg

Electric charge, q 0

Spin, S 1
2

Magnetic dipole moment, µn −1.913µN

Lifetime, τ 886± 1 sec

Table 2.1: Basic properties of neutrons.
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collisions with light atoms, such as hydrogen or deuterium. To be diffracted by the crystal,

the wavelength of the incoming particle has to be comparable with or smaller than the lattice

constant, otherwise, the ordinary refraction will take place. Fortunately, the neutron’s mass

results in the de Broglie wavelength of the thermal neutrons which fits very well for most of

the solids and liquids. Furthermore, thermal neutron energies (1 – 100 meV) are comparable

in magnitude with elementary excitations in solids, which makes neutron spectroscopy a

unique method for studying phonons and magnons.

The neutron has zero electric charge. This leads to a weak interaction with matter,

which allows the neutron to penetrate deep into the sample. From the experimental point

of view, it makes possible to easily use various sample environment, such as cryostats,

furnaces, pressure cells, etc. Electrical neutrality means the absence of the Coulomb barrier,

which must be overcome to approach atomic nuclei. It is worth noting here that the theory

of the interaction of neutrons with nuclei is not fully developed. Nevertheless, it is well

known that this interaction is very short-range (∼ 10−13 cm). This is much smaller than

thermal neutron wavelength and interaction can be treated as point-like and scattering is

spherically symmetric. It can be characterized by only one parameter — scattering length b.

Scattering cross section for a single nucleus equals 4πb2. Scattering length can be positive

or negative, and in general, it is a complex number. The sign is responsible for the phase of

the scattered neutron wave in respect to the incident wave. The imaginary part is associated

with absorption and becomes noticeable near the nuclear absorption resonance. In contrast

to the electron or x-ray scattering, neutrons scattering length does not depend on the number

of electrons in an atom and where is no systematic variation across the periodic table. Even

among isotopes of the same element, the scattering strength changes somehow randomly.

Neutron has an internal structure and consists of quarks bonded by gluons. It leads to

the non-zero magnetic dipole moment of the neutron, which interacts magnetically with

unpaired electrons in the atomic electron shell with a strength comparable to that of the

nuclear interaction. Neutron’s magnetic moment, listed in Table 2.1, makes it a unique

probe for studying magnetism.

Spin angular momentum can be ±1
2ħh. It is possible to prepare a neutron beam with only

one spin polarization, spin up or spin down. Polarization neutron analysis is a powerful

method for determining magnetic structures, separating magnetic and nuclear scattering,

and subtracting incoherent from total scattering.

And the last but not the least important property of the neutron that is worth mentioning

is the finite lifetime τ (Table 2.1). A free neutron is not a stable particle and undergoes

beta decay into a proton, an electron, and an electron anti-neutrino. Neutron scattering
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experiments are possible because the thermal neutron’s lifetime is much longer than its

traveling time between the production and detection, which is of the order of milliseconds.

2.1.2 Neutron production

Radioactive sources

Portable sources utilize the radioactive decay of unstable elements to produce neutrons. The

scheme is similar to the one that Chadwick used to discover the neutron.

The first type of the radioactive neutron sources employs an alpha emitting element to

produce 4He for (α, n) reaction:

9Be + 4He→ 12C + 1n + 5.7 MeV (2.1)

As emitter can be used radium, americium, plutonium etc. Because of the short range of

alpha particles the source should be made of a mixture of emitter and beryllium for close

contact.

Another type of sources are based on (γ, n) photofission reaction. In these sources

a radioisotope undergoing gamma decay producing γ particles is used for bombarding

beryllium target which leads to the endothermic reaction with the production of a neutron:

γ+ 9Be→ 8Be + 1n− 1.66 MeV (2.2)

The common gamma source is the artificial radioactive antimony isotope 124Sb. The main

advantage of this type of source arises from the greater range of gamma particles compared

to gamma particles in the (α, n) reaction. As a result, the emitter can be separated from the

beryllium target, and the neutron production can be turned on and off.

Radioactive neutron sources are in use today for installing and calibrating neutron

detectors. The emission rates from such sources are typically from 106 to 108 neutrons

per second, which is too low for most neutron scattering experiments. The more powerful

sources, such as nuclear reactors and spallation neutron sources, are employed to produce

neutrons for scientific use.

Neutrons from nuclear reactors

The heart of a nuclear reactor is the fission reaction, during which a heavy nucleus splits

into two lighter ones, emitting some neutrons, γ-rays, and other subatomic particles.

The typical nuclear reactor working on thermal neutrons consists of four principal

components: fuel, moderator, cooling system, and shielding. The fuel is a fissile material,
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commonly uranium enriched with its metastable isotope 235U. A typical nuclear fission

reaction

1
0n + 235

92U→ (23692U
∗)→ fission reaction products (2.3)

excretes a variety of reaction products, such as fissioned nuclei or fission products, neutrinos,

gammas, betas, and neutrons [22]. Along with particles, the reaction releases a huge amount

of energy, about 200 MeV in each fission.

U-235 U-236
Fission

product

Fission

product

Thermal 

neutron

Figure 2.1: Schematic of a fission reaction.

A simplified fission reaction is shown

schematically in Fig. 2.1. Following the ini-

tial absorption of a thermal neutron by the
235U nucleus, it forms an unstable compos-

ite nucleus 236U∗, which undergoes fission.

The most common is binary fission into fis-

sion products with atomic masses of about

95 and 135 u. Also, an average of 2.5 neutrons. These neutrons can be used to further

propagate a fission chain reaction or can be employed for neutron scattering experiments.

The average kinetic energy of the emitted neutrons is about 2.5 MeV, and the corresponding

spectrum is shown in Fig. 2.2. More than 99% of these fission neutrons are emitted within a

very short time after a fission event (within 10−14 s) and are called prompt neutrons. The

subsequent radioactive decay of the fission products produces delayed neutrons, appearing

with noticeable time delay. Although these neutrons account for less than 1 percent of the

total number of neutrons emitted, they play a key role in controlling the chain reaction.

Figure 2.2: Comparison of the thermal neutron fission

spectrum of 235U with spallation spectrum. The spal-

lation is measured for tungsten target bombarded by

800 MeV protons [22].

The high-energy neutrons produced dur-

ing fission are not able to sustain the chain

reaction and must be slowed down, or mod-

erated. The fact is that 235U has a negligible

capture cross section for high-energy neu-

trons, while neutrons from the thermal part

of the spectrum allow maintaining a chain

reaction. The neutrons are slowed down

through collisions with light atoms. Because

the kinetic energy exchange is most effec-

tive between the particles of similar masses,

heavy water (D2O) or graphite are common

moderators used in thermal neutron reactors. The resulting neutrons are in thermal equi-

librium with moderator, and their velocity spectrum approaches the Maxwell-Boltzmann
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distribution:

φ(v)∝ v3 exp (−1

2
mv2/kBT), (2.4)

where φ(v) is the flux of neutrons with the velocity v, m is the neutron mass, kB is the

Boltzmann constant, and T is the temperature of the moderator. The typical moderator

temperature is kept near 300 K. It corresponds to the energy of about 26 meV, which is,

luckily, just the typical energy of elementary excitations in a solid. In some special cases, if

neutrons with significantly higher or lower temperatures are required, additional cold or

hot moderators can be installed outside the reactor core.

The colossal energy released during the nuclear fission process must be efficiently re-

moved to prevent core overheating, or in the worst case, core meltdown. The achievable

rate of cooling limits the power density in the core of the high-flux fission reactors, leading

to the limited neutron flux. The need for higher neutron fluxes has led to the development

of alternative neutron sources based on the spallation process.

Spallation neutron sources

Spallation reaction is a process of collision of a light projectile (proton, neu-

tron, or light nucleus) with kinetic energy from hundreds of MeV to several

GeV with a heavy nucleus (e.g., lead, tantalum), which is usually referred to

as target nucleus, with consequent emission of hadrons (mostly neutrons) or nu-

clear fragments. Modern spallation neutron sources use protons as projectiles.

Initial 

proton

Target

nucleus

Intranuclear

cascade

High-energy

fission

Evaporation

1 GeV

Figure 2.3: Spallation process. After the initial proton collides with a target

nucleus, the spallation process can be described in two stages: intranuclear

cascade and de-excitation. Neutrons useful for the neutron experiments are

released during the second stage. See text for details.

For the spallation pro-

cess, it is crucial for the

incident proton to have

minimal kinetic energy of

about 100–150 MeV. For

such protons, de Broglie

wavelength is of the or-

der of 10−13 cm, which is

smaller than the size of

the target nucleus. In this

case, a proton interacts

with individual nucleons

inside the nucleus. After a proton collides with a heavy metal nucleus, two main stages can

be distinguished: intranuclear cascade and de-excitation. The schematic of the spallation
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process is shown in Fig. 2.3. When the incident proton hits the target, it undergoes a series

of direct interactions with nucleons inside the nucleus – the so-called intranuclear cascade.

During this stage, some of the particles (neutrons, protons, and pions) can be ejected from

the nucleus in the direction of the projectile and lead to the secondary spallation processes —

internuclear cascade. The particles emitted at the intra-nuclear cascade stage have very high

kinetic energies — from about 20 MeV to the energy of the incident proton. They cannot be

effectively thermalized and therefore are useless for neutron experiments. Sometimes, for

modeling the spallation process, an intermediate pre-equilibrium stage can be distinguished.

Upon this phase, low-energy particles (< 20 MeV) are emitted, but the nucleons inside

the target nucleus are not yet in the equilibrium state. When the intranuclear cascade

and the pre-equilibrium stage are over, the nucleus remains in a highly excited state. The

second stage of the spallation process is de-excitation, or evaporation, when the excited

nucleus relaxes by isotropically emitting low-energy particles, such as neutrons, protons,

alpha-particles, etc., with the majority of the particles being neutrons. These particles have

lower energies (< 20 MeV) and can be thermalized and used for neutron experiments. For

some very heavy nuclei, such as lead, tungsten, thorium, and uranium, the high-energy

fission can occur during the de-excitation, competing with evaporation. After evaporation,

the residual nucleus can be radioactive and decay with the emission of gamma rays.

The net number of neutrons released in one nuclear fission event is about 2.5–3. In

the case of spallation, the number of neutrons produced reaches 25–30 for each collision

when a target of heavy elements is bombarded with protons with energies of about 1 GeV.

Another advantage of a spallation process for neutron production is a smaller amount of

energy, released as heat. As was mention above, the limit on the neutron flux produced at

the nuclear reactor is caused by the cooling system. The amount of heat energy released

in the spallation process per one neutron production is four times smaller than for fission

neutron. Spallation neutron sources have a big political advantage as far as the target does

not require to be made of fissile material. The neutron production can be easily stopped by

switching off the proton accelerator power, therefore there is no danger that chain reaction

will become uncontrolled. However, despite the obvious advantages of the method, there

are also obstacles. First of all, spallation neutrons are much more energetic in comparison

to fission ones. The spectra of the spallation and fission neutrons are shown in Fig. 2.2.

Intranuclear cascade neutrons reach energies up to a few GeV. They are highly penetrating

and can cause difficulties with radiation protection. Another drawback is the markedly

higher cost of spallation neutrons compared to the relatively cheap fission production.
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There are two types of spallation neutron sources – pulsed and continuous. Pulsed

sources use linear accelerators in combination with proton storage rings (e.g., SNS at Oak

Ridge, USA) or synchrotrons (e.g., ISIS in the United Kingdom) to generate high-energy

proton beams. The European Spallation Source will not use a storage ring and therefore will

produce a long proton pulse. To be able to benefit from such long pulses, special neutron

instruments are developed. Continuous spallation sources are based on proton accelerators

(e.g., SINQ at Villigen, Switzerland).

2.1.3 Thermal neutron detection

Interaction of neutrons with matter

There are two main mechanisms of interaction of neutrons with a nucleus: scattering and

absorption [23].

In the first process the initial neutron and nucleus interact with each other and both

particles reappear in the scattering products:

n + A
ZX→ A

ZX + n, (n, n) reaction.

Scattering can be elastic or inelastic. Elastic scattering leads to a simple redistribution of

the total kinetic energy of the neutron-nucleus system, keeping the total kinetic energy

unchanged. When inelastic scattering happens, the neutron transfers to the nucleus a part

of its kinetic energy, leaving the nucleus in an excited state. The nucleus can further relax to

the ground state emitting gamma particles.

The absorption process causes much more significant changes in the system of interacting

particles. The initial neutron disappears being absorbed by the nucleus forming a compound

nucleus, which decays either by the emission of subatomic particles or by fission. The typical

absorption reactions are:

n + A
ZX→ A

Z−1Y + p, (n, p) reaction,

n + A
ZX→ A−3

Z−2Y + 4
2He, (n, α) reaction,

n + A
ZX→ A−1

ZY + 2p, (n, 2n) reaction,

n + A
ZX→ A+1

ZY + γ, (n, γ) reaction,

n + A
ZX→ A1

Z1
Y1 + A2

Z2
Y2 + n + n + ..., fission.

The absorption process is very important for neutron detection. Zero electric charge

of the neutron makes it a very weak probe that does not excessively disturb the sample

under investigation. While it is a great advantage for the nondestructive probing of material
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Figure 2.4: (a) Schematic of a cylindrical proportional counter. (b) Ionization tracks in the gas-filled detector.

(c) Illustration of the pulse-height distribution and discrimination procedure. Adapted from Ref. [26].

properties, it makes neutron detection quite an intricate task. Thermal neutrons produce

negligible ionization and can only be detected by secondary particles emitted after neutron

absorption. The most common nuclear reactions which are used for the thermal neutron

detection are [24,25]:

n + 3
2He→ 3

1H + p + 0.8 MeV, (2.5)

n + 10
5B→ 7

3Li + 4
2He + 2.3 MeV, (2.6)

n + 235
92U→ two fission fragments + 190 MeV. (2.7)

Gas ionization detectors

After the neutron beam is scattered by the sample, it should be detected. A widely used

type of thermal neutron detectors is a gas-filled proportional counter. Here we will give

basic principles of its operation, more details can be found in Refs. [23,24,26]. A schematic

drawing of a cylindrical gas detector is shown in Fig. 2.4 (a). It consists of a cylindrical tube,

manufactured from either stainless steel or aluminum which works as a cathode [24]. A thin

anode wire made of gold-plated tungsten is located along the central axis of the cylinder and

held in place by ceramic insulators. There is one (or two, if the detector is position-sensitive)

electrical connector attached to the electronic equipment. The tube is hermetically sealed

and filled with a mixture of gases. The widely used technology is based on nuclear reactions

with either 3He or 10B (2.5, 2.6). In this type of detectors, the absorbing material is a gas,
3He or boron trifluoride enriched in 10B.

To be specific, here we will consider the 3He detectors. After the neutron enters the detec-

tor tube, it can be absorbed by the 3He nucleus. 3He decays according to the reaction (2.5)

on proton and triton, emitting about 800 KeV. This energy is shared by the reaction products.
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Figure 2.5: Pulse-height vs applied volt-

age curves to illustrate ionization, propor-

tional, and Geiger-Müller regions of opera-

tion. Adapted from Ref. [24].

It follows from the laws of conservation of energy and

momentum that a lighter particle, in our case a proton,

takes three times more energy than 3H. The reaction

products, scattering in different directions, ionize gas

molecules, forming ionization tracks [see Fig. 2.4 (b)].

Further destiny of the ionized particles depends on

the voltage applied to the anode. The electrons move

to the anode, accelerating in the electric field which

diverges as 1/r, where r is the distance to the anode

wire [Fig. 2.4 (a)]. The positive ions, in turn, move

towards the cathode. If the voltage is very low, the

electric field in the detector is not strong, electrons

and ions move relatively slow, and almost all of them

recombine. As voltage increases, the particles move

faster and recombination rate decreases, finely reaching the point when all the charge

created during the ionization is being collected (Fig. 2.5). This first region is called the

recombination region. In the ionization chamber regime, enough voltage has been applied

to collect all the electrons before they recombine. Further increase in the voltage does

not change a pulse height because the recombination rate is zero and no new charge is

produced. At higher voltages, the field is enough to accelerate the electrons until they

eventually produce their own ionization in a Townsend avalanche. The output signal is

higher, but it is linearly proportional to the energy deposed in the gas. This regime is referred

to as a proportional regime and is widely used in neutron scattering instruments. Further

increase in voltage leads to the realization of the ionization cascade and the signal is not

anymore proportional to the number of neutrons entered the tube, the detector operates

in the Geiger-Muller mode. After some critical voltage, a single ionizing event initiates

a continuous discharge in the gas and the device cannot be used as a particle detector

anymore.

Even so the signal pulses have the same origin, they can differ in height. Fig. 2.4 (c)

shows the schematic of a pulse-height distribution in a 3He gas-filled detector. The origin of

the double-plateau shape of the pulse-height distribution is the wall effect. if the neutron

is absorbed by the nucleus near the detector’s wall, one of the tracks (or, rarely, both) can

hit the wall before it transfers its energy to the gas. The edge of the lower plateau, V1,

corresponds to the case when the particle with higher energy (triton) hits the wall; the

edge of the second plateau, V2, marks the energy of the lighter particle (proton). There is a
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continuous range of possibilities, from the total loss of energy of one ion, while the other

transfers all of its energy to the gas, to the complete deposit of the energies of both particles

into the gas, producing a full-height peak (V1 + V2).

To distinguish neutron capture events from the noise of various origins, the pulse-height

discrimination procedure is applied. It is the electronic means by which only the pulses

above or below a certain threshold are accepted. The dashed line in Fig. 2.4 (c) shows

the low energy pulses from the noise sources. During the low-pulse-height recognition

procedure, the minimum pulse value is set, below which all pulses will be ignored. The

high-pulse-height discrimination can be useful to separate the background from the fast

neutron recoil events or alpha particles from heavy element impurities in the detector wall

material [26].

The logical step following the simple gas-filled counter is a position-sensitive detector

(PSD). This can be simply done by making anode wire resistive. After the neutron capture

event happens, the electric charge is produced whose amplitude is measured at both ends of

the detector. The charge measured at the end of the detector is inversely proportional to the

distance to the neutron absorption point. By measuring the charges at both ends of the tube,

we naturally obtain the position of the neutron along the detector. A close-packed array of

individual PSD gas detectors can be built to obtain two-dimensional (2D) spatial resolution.

This approach has been implemented in IN5 at ILL and MAPS at ISIS spectrometers.

To measure the intensity and spectrum of the incident neutron beam, any neutron

instrument is equipped with a beam monitor, which is commonly a fission chamber. The

typical beam monitor fission chamber is a rectangular box filled with gas. The thin layer of

the fissile material (usually uranium highly enriched in 235U) is evaporated on the cathode

inside of the camera wall and directly exposed to the detector gas. After the absorption of

the neutron by the 235U nucleus, the energetic fission fragments ionize the gas. A common

fill gas is a mixture of 90% argon and 10% methane [24]. The ionization caused by the

fission fragments is detected electronically. Fission chambers work in the ionization chamber

mode, no signal amplification needed. It caused by the high energy of the fission fragments

producing a sufficient ionization [24]. In some fission chambers, the fissile material and

detector gas are not separated. The chamber is filled with gaseous uranium hexafluoride,

UF6. The advantages of fission chambers, which determine their use for monitoring a direct

beam, are the highest insensitivity to gamma radiation, low efficiency, and high transmission.

At present, many methods of neutron detection have been implemented, in addition

to gas proportional counters. With the advent of high-intensity pulsed neutron sources,

the demand for a PSD capable of rapidly registering high and instantaneous count rates
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has grown rapidly. Scintillation detectors are of great interest for these purposes, since

their detection mechanism is inherently hundreds of times faster. The spatial resolution

of scintillation detectors is also much better than that of gas detectors. This is due to the

range of ionizing particles being reduced to a few microns. However, they have a significant

drawback — a very high sensitivity to gamma radiation. Therefore, they are rarely used on

continuous neutron sources and only if gamma sensitivity is not particularly important. The

gamma background can be distinguished in a pulsed neutron source by taking advantage of

the time-of-flight method.

2.2 Theory of neutron scattering

Neutrons are scattered by atomic nuclei and unpaired electrons of the magnetic atoms.

The corresponding events are called nuclear and magnetic neutron scattering. Neutron

scattering intensity is a superposition of these two processes. To interpret experimental data

and obtain information about the structure and magnetic dynamics in a system, it is crucial to

understand the basic principles of both types of neutron scattering. An exhaustive description

of the theory of neutron scattering is given, for instance, in the book of Squires [18]. Here

are the basic concepts and formulas that are needed to understand this work.

2.2.1 Scattering cross sections

Target

Incident

neutrons

Direction

Figure 2.6: Geometry of the scattering process. Adapted

from [18].

Any type of scattering can be characterised

by a quantity known as a cross section. Con-

sider a beam of monochromatic neutrons

incident on a scattering system along the z

axis. The schematic of the process geome-

try is sketched in Fig. 2.6. After interaction

with a scattering system, a neutron can be

scattered in any direction. If we count the to-

tal number of neutrons scattered per second

into a full solid angle 4π, the total scattering

cross section is defined as

σtot =
C
ηΦ

, (2.8)

where C and η are the count rate and the efficiency of the detector, Φ is the neutron flux

incident on a target.
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When we count the number of neutrons scattered per second into a small solid angle dΩ

in the direction (θ ,φ), the differential cross section is defined by the equation

dσ
dΩ

=
C

ηΦ∆Ω
, (2.9)

where ∆Ω is a solid angle in the direction (θ ,φ) covered by the detector.

If we analyze the energies of the scattered neutrons and count only the ones with final

energies between E and E +∆E, then the corresponding cross section is referred to as the

partial differential cross section

d2σ

dΩ dE
=

C
ηΦ∆Ω∆E

. (2.10)

The scattering cross sections are exactly the quantities that are measured in neutron scattering

experiments. Assume that the incident neutrons, characterized by a wave vector ki and a

spin σi, scatter by the target into a state with kf and σf. The target is a condensed matter

system undergoing a transition from a state λi to a state λf. In this case, the count rate C in

a detector that has the efficiency η and spans the solid angle dΩ is given by

C = Φ dΩη
�

dσ
dΩ

�

ki,σi,λi→kf,σf,λf

. (2.11)

If we denote the number of transitions per second from the state |kiσiλi〉 to the state |kfσfλf〉
as Wki,σi,λi→kf,σf,λf

, the differential cross section can be written as

�

dσ
dΩ

�

ki,σi,λi→kf,σf,λf

=
1

Φ dΩ

∑

kf

Wki,σi,λi→kf,σf,λf
. (2.12)

To evaluate the sum at the right-hand side of Eq. (2.12) we use Fermi’s golden rule — the

fundamental result in quantum mechanics,

∑

kf

Wki,σi,λi→kf,σf,λf
=

2π

ħh
|〈kfσfλf|V |kiσiλi〉|2ρkfσf(Ef)

. (2.13)

Here V is the interaction potential between the neutron and the sample, and ρkfσf(Ef)
is

the number of the final neutron states kf,σf in dΩ per unit energy interval. The use of the

golden rule is justified by the legitimacy of the Born approximation. Indeed, first-order

perturbation theory is certainly valid for the short-range nuclear potential. In the case of

the long-range magnetic scattering potential, the use of the golden rule is supported by the

weakness of the potential.

Using a standard technique in quantum mechanics, referred to as box normalisation, and

a law of conservation of energy, the master formula of neutron scattering can be derived,
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�

d2σ

dΩ dE

�

ki→kf

=
kf

ki

�

mn

2πħh2

�2
∑

λiσi

P(λi)P(σi)
∑

λfσf

|〈kfσfλf|V |kiσiλi〉|2δ(E + Eλi
− Eλf

),

(2.14)

where mn is a neutron mass. Here the idea is to interpret an experimental signal by

summation over all final states of the sample λf and final neutron polarisation states σf,

and averaging over all initial states λi and σi, occurring with probabilities P(λi) and P(σi)

correspondingly. This equation is very general and can be applied to different interaction

potentials V (r).

The differential cross section can be expressed as a sum of coherent and incoherent parts:

d2σ

dΩf dEf
=

d2σ

dΩf dEf

�

�

�

�

coh

+
d2σ

dΩf dEf

�

�

�

�

inc

(2.15)

The coherent scattering cross section depends on the correlation between the positions of

the same nucleus at different times, and on the correlation between the positions of different

atoms at different times. Therefore, it leads to interference effects. Coherent scattering

provides information about the cooperative effects among different atoms. Examples of

such processes are elastic Bragg scattering or inelastic scattering by phonons and magnons.

Unlike coherent scattering, incoherent scattering depends only on the correlation between

the positions of the same atoms at different times and, therefore, does not cause interference

effects. The incoherent part of the scattering signal gives information about individual

particle motion, such as diffusion.

2.2.2 Nuclear scattering

Although magnetic scattering is studied in this work, nuclear scattering makes the main

contribution to the experimental signal. Below we will briefly outline the basic formulas

and principles of thermal neutron scattering by nuclei.

Scattering by a single nucleus

The scattering of a neutron by the nucleus is due to the strong interaction. The wavelength

of the thermal neutron is of the order of 10−8 cm, which is about 4–5 orders of magnitude

larger than the range of the strong force. It leads to a spherically symmetric scattered wave.

A schematic sketch of the thermal neutron scattering by the single fixed nucleus is shown in

Fig. 2.7. The nucleus is at the origin of the coordinate system. If the incident neutron with

the wave vector k along the z axis is written as a plane wave
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ψinc = exp (ikz), (2.16)

scattered wave can be written as

ψsc = − b
r

exp (ikr), (2.17)

where b is a scattering length, the value which is unique not only for each chemical

element but even for different isotopes and spin states of the nucleus-neutron system.

Incident 

beam

Scattered

beam

Plane wave Spherical wave

Figure 2.7: Incident plane wave of neutrons scattered by a single

point scatterer P.

For simplicity reasons we consider

elastic scattering and the wave vec-

tors of the initial and scattered neu-

trons have the same absolute value.

In general, the scattering length

is a complex quantity, b = b0 +

b′+ i b′′. Here b0 is responsible for

the scattering on the potential, and

b′+ i b′′ for the resonance scatter-

ing, happening with the formation

of a compound nucleus. For the

most nuclei (with the exception of strongly absorbing nuclei such as 103Rh,113Cd, 157Gd,176Lu,

etc.) the imaginary part of b is very small, and the scattering length can be considered as a

real quantity. In the discussion below we will consider only such nuclei.

The differential scattering cross section for scattering of neutrons by a single fixed nucleus

is given by
dσ
dΩ

= b2. (2.18)

The total scattering cross section σtot is

σtot = 4πb2. (2.19)

Nuclear scattering by a general system of particles

We start by ignoring the spin of the neutron for simplicity reasons and specify the neutron state

entirely by its momentum. For nuclear scattering, the nuclear potential can be approximated

with Fermi pseudopotential:

V (r) =
2πħh2

mn
bδ(r). (2.20)
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Fourier transform of Eq. (2.20) gives:

V (Q) =
2πħh2

mn
b, (2.21)

where Q = ki−kf is a scattering vector. Substituting Eq. (2.21) into the master equation (2.14),

we obtain an expression for the cross section of the nuclear neutron scattering:

d2σ

dΩf dEf
=

kf

ki

∑

λiλf

P(λi)

�

�

�

�

�

λf

�

�

�

�

b
∑

l

eiQ·rl

�

�

�

�

λi

��

�

�

�

2

δ(ħhω+ Ei − Ef), (2.22)

where rl are the coordinates of the identical scattering centers. Using a few standard

operations, Van Hove (1954) showed that the cross section for a system of N atoms can be

written as
d2σ

dΩf dEf
= N

kf

ki
b2S(Q,ω), (2.23)

where S(Q,ω) is a scattering function of the system,

S(Q,ω) =
1

2πħhN

∑

l l ′

∫ ∞

−∞
d t〈e−iQ·rl′(0)eiQ·rl(t)〉e−iωt , (2.24)

where we integrate over the time t and the angle brackets 〈...〉 denote the average over

initial states. The scattering function gives the probability that a scattering event will result

in a change in the energy of the system by ħhω and the momentum by ħhQ. Equation (2.24)

shows that the scattering function depends only on the energy and momentum transferred

to the sample, and not on the actual values of the initial and final neutron wave vectors.

S(Q,ω) contains the information about the positions and motions of atoms in a sample.

Therefore, the goal of most neutron scattering experiments is to measure the scattering

function and extract the information about the microscopic properties of a system under

investigation.

Coherent and incoherent nuclear scattering

To understand the difference between the coherent and incoherent scattering, consider a

monoelemental sample. Even in this case, the sample may contain nuclei with different

scattering lengths. The fact is that different isotopes of the same chemical element have

different values of b. Moreover, if the scattering nucleus has a nonzero spin, the scattering

length will vary depending on the mutual orientation of the neutron and the nuclear spins.

Let us assume that there are no correlations between nuclear position and scattering

length. In this case, the scattering, which depends on the relative positions of the atoms,
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will be determined only by the averaged scattering length b. Thus, the coherent scattering

cross section is given by

σcoh = 4π(b)2. (2.25)

Writing down the total scattering cross section as

σtot = 4πb2, (2.26)

the incoherent scattering cross section, caused by the random fluctuations in scattering

length from site to site, can be obtained as:

σinc = σtot −σcoh = 4π(b− b)2. (2.27)

An effective incoherent scattering length can be written as:

binc =

q

b2 − b
2
. (2.28)

Coherent nuclear scattering

Examples of coherent nuclear scattering are elastic or Bragg scattering and inelastic phonon

scattering. For coherent nuclear scattering, the partial scattering cross section is

d2σ

dΩf dEf

�

�

�

�

coh

= N
kf

ki

σcoh

4π
S(Q,ω). (2.29)

In general, if there are correlations between the nuclear positions and scattering length in a

sample, they should be taken into account by adding the site-dependent scattering length in

S(Q,ω).

If the atomic density operator is written in the form

ρQ(t) =
∑

l

eiQ·rl(t), (2.30)

the scattering function (2.24) can be rewritten as

S(Q,ω) =
1

2πħhN

∫ ∞

−∞
d te−iωt〈ρQ(0)ρ−Q(t)〉. (2.31)
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Bragg scattering

In the case of coherent nuclear scattering, we consider the time-averaged density operator:

S(Q,ω) = δ(ħhω)
1

N

�

∑

l l ′
eiQ(rl−rl′)

�

. (2.32)

For a Bravais lattice (one atom per unit cell) with the unit cell volume v0 and reciprocal

lattice vectors G, the scattering function can be written as

S(Q,ω) = δ(ħhω)
(2π)3

v0

∑

G

δ(Q−G). (2.33)

Substituting this into Eq. (2.23), we obtain the expression for the coherent elastic nuclear

scattering cross section by an ideally rigid body:

dσ
dΩ

�

�

�

�

el

coh

= N
(2π)3

v0
(b)2

∑

G

δ(Q−G). (2.34)

In reality, there are no absolutely rigid bodies and atoms oscillate in the vicinity of the

equilibrium positions. This leads to some weakening of the peak intensity. To take these

fluctuations into account, it is necessary to add a factor of e−2W to Eq. (2.34), known as the

Debye-Waller factor. For small deviations u of atoms from their equilibrium positions r:

W =
1

2
〈(Q · u)2〉. (2.35)

Let us generalize Eq. (2.34) to the case of a lattice with several atoms per unit cell. If the jth

atom in the cell occupies position d j, then the coherent elastic differential scattering cross

section takes the form:

dσ
dΩ

�

�

�

�

el

coh

= N
(2π)3

v0

∑

G

δ(Q−G)|FN(G)|2, (2.36)

where

FN(G) =
∑

j

b je
iG·d j e−Wj (2.37)

is a static nuclear structure factor. It contains the information about the atomic positions d j

within a unit cell. Measurement of structure factors for a number of reflections with their

subsequent fit by models for atomic parameters is a standard method of crystallography.
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Inelastic nuclear scattering

Inelastic coherent nuclear scattering involves the transfer of energy from a neutron to a

scattering system, or vice versa. If the elastic contribution (Bragg scattering) is subtracted

from the coherent amplitude of nuclear scattering, then S(Q,ω) will correspond to lattice

vibrations. An important property of S(Q,ω) is the principle of detailed balance:

S(−Q,−ω) = e−ħhω/kBT S(Q,ω), (2.38)

where kB is the Boltzmann constant, T is the temperature of the scattering system, and the

frequency ω is positive. When deriving the Eq. (2.38), it is assumed that for a pair of states

of a scattering system, a priori the probabilities that a neutron will transfer the system from

one state to another are the same. Since the probability of finding a system in a state with

higher energy is e−ħhω/kBT times lower than in a state with lower energy, then S(−Q,−ω)

is less than S(Q,ω) by the same amount. Thus, the probability of excitation annihilation

in the system is lower than the probability of excitation creation and is determined by the

statistical weight factor for the initial state. The fluctuation-dissipation theorem establishes

a connection between the scattering function S(Q,ω) and the imaginary part of the dynamic

susceptibility χ ′′(Q,ω):

S(Q,ω) =
χ ′′(Q,ω)

1− e−ħhω/kBT
. (2.39)

Equation (2.39) is very useful in the case of phonons, when χ ′′(Q,ω) does not explicitly

depend on temperature. Let us consider the case of one-phonon coherent scattering, that is,

a process in which a neutron and a scattering system exchange one quantum of vibrational

energy. For a lattice with n atoms per unit cell, there are 3n different phonon branches

with frequencies ωqs, where the index s denotes different vibration modes, and vector q is

measured from the nearest reciprocal lattice vector G. In this case, χ ′′(Q,ω) takes the form:

χ ′′(Q,ω) =
1

2

(2π)3

v0

∑

G,q

δ(Q−q−G)
∑

s

1

ωqs
|F (Q)|2× [δ(ω−ωqs)−δ(ω+ωqs)], (2.40)

where

F (Q) =
∑

j

b j
p

m j
(Q · ξ js)eiQ·d j e−Wj (2.41)

is a dynamic structure factor. Here ξ js is the polarisation vector for a particular mode s of

the jth atom in a unit cell, m j is its mass, and b j is the average scattering amplitude.
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2.2.3 Magnetic scattering

Here we will briefly describe the scattering cross sections due to the magnetic interactions

between the neutron and the unpaired electrons in the scattering system.

Magnetic scattering from unpaired electrons

The neutron has a magnetic dipole moment µn = −γµNσ, where γ = 1.913, µN is the

nuclear magneton, and σ is the Pauli spin operator for the neutron. Consider an unpaired

electron with momentum p. Its magnetic dipole moment µe = −2µBs, where µB is the Bohr

magneton, and s is the spin angular momentum of the electron. The magnetic field at a

point R from the electron is due to its magnetic dipole moment and the momentum of the

electron p. The potential of a neutron in this field is

V(R) = −γµN2µBσ ·
�

curl

�

s× bR
R2

�

+
1

ħh
p× bR

R2

�

, (2.42)

where bR is a unit vector in the direction of R.

Substituting the last expression into the master formula for neutron scattering (2.14) and

introducing time dependence, one can obtain an expression for the magnetic cross section

for neutron scattering by a general system of unpaired electrons:

d2σ

dΩdE
=

kf

ki

(γr0)2

2πħh

∑

αβ

(δαβ − bQαbQβ)

∫

〈Dα(−Q, 0)Dβ(Q, t)〉e−iE t/ħhdt, (2.43)

where

Dβ(Q, t) = eiH t/ħhDβ(Q)e−iH t/ħh (2.44)

is a time-dependent magnetic interaction operator. Here r0 = e2/(mec2) = 0.28179 ×
10−12 cm, δαβ is the Kronecker delta, scattering vector Q = kf − ki, and α and β stand for

x , y, z. Operator D(Q) is related to the magnetisation operator M(r) by

D(Q) = − 1

2µB

∫

M(r)eiQ·rdr = − 1

2µB
M(Q). (2.45)

From the Eq. (2.43) it is seen that scattering is dependent on the magnetic fluctuation of the

scattering system. This resembles the situation with nuclear scattering, which depends on

density fluctuations in the scattering system. However, unlike the latter, magnetic scattering

possesses the directional dependence by means of the tensor (δαβ−bQαbQβ). As a consequence,

the components of the magnetization are chosen perpendicular to Q. In some cases, this

will make it possible to determine the orientation of the magnetic moments in the sample.
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Magnetic scattering from magnetic crystals

Above, we considered the general case of magnetic scattering by an arbitrary many-body

system with no assumption about the spatial distribution of unpaired electrons. Now let

us consider the case when the unpaired electrons belong to magnetic ions ordered into a

crystal lattice. If ions occupy positions R j and the spin-orbit interaction is present, then the

operator D(Q, t) has the form

D(Q, t) =
∑

j

f j(Q)µ j(t)eiQ·R j(t), (2.46)

where µ j = 1
2S j is the magnetic moment localized at the atom at R j in units of µB, and f j(Q)

are the atomic form factors:

f (Q) =
gS

g
j0(Q) +

gL

g

�

j0(Q) + j2(Q)
�

, (2.47)

where

jn(Q) =

∫ ∞

0

jn(Qr)|ψ(r)|2r2dr. (2.48)

Here g, gL, and gS are the gyromagnetic ratios, jn are spherical Bessel functions of order n,

andψ(r) are the radial part of the unpaired electron wave functions. The atomic form factor

fi(Q) is the Fourier transform of the magnetic electron density around the atomic center.

Assuming that interatomic forces are independent of magnetic moments, the scattering cross

section can be written as:

d2σ

dΩdE
=

kf

ki

(γr0)2

2πħh

∑

αβ

(δαβ − bQαbQβ)
∑

j j′
f ∗j (Q) f j′(Q)

×
∫

〈µ jα(0)µ j′β(t)〉〈e−iQ·R j(0)eiQ·R j′(t)〉e−iE t/ħhdt,

(2.49)

This scattering cross section depends on the correlation between atomic coordinates. This

demonstrates the fact that in addition to the magnetic behavior of the scattering system,

crystal structure and dynamics also affect magnetic scattering.

Elastic magnetic scattering

In the previous sections, we saw that magnetic scattering depends on the spin-spin correlation

function. Let us assume that a decrease in the crystal temperature is accompanied by an

ordering of the magnetic moments of the atoms. In this case, the spins become correlated.

If the ordering remains unchanged after the scattering event, and the correlations do not
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depend on time, then the magnetic scattering is purely elastic. In this case, from Eq. (2.43)

we get:
�

dσ
dΩ

�

el
= (γr0)2|〈D⊥(Q)〉|2, (2.50)

where

D+
⊥ ·D⊥ =

∑

α,β

(δαβ − bQαbQβ)D+
α
·Dβ . (2.51)

If the scattering system is a periodic crystal, we have:

R j(t) = Rl + rd + u j(t), (2.52)

where Rl is the coordinate of the lth unit cell, rd is the equilibrium position of the atom

within the unit cell, and u j(t) is the displacement of the atom from the equilibrium position.

Independently averaging the nuclear and electronic parts of Eq. (2.46), we get:

〈D(Q)〉=
1

γr0

∑

l

FM(Q)eiQ·Rl , (2.53)

where the summation is carried out over all unit cells. Here FM(Q) is a magnetic unit cell

structure factor:

FM(Q) = γr0
∑

d

fd(Q)〈µd〉eiQ·rd e−Wd(Q). (2.54)

Finally, the elastic differential magnetic cross section can be written as

�

dσ
dΩ

�

el
=

2π3

v0

∑

τM

δ(Q−τM)
�

�FM⊥(τM)
�

�

2
, (2.55)

where

FM⊥ = bQ× FM × bQ, (2.56)

and τM is the reciprocal lattice vector of the magnetic structure which can be written as

τM = τ± k. The k vector in a propagation vector of the magnetic structure.

Inelastic magnetic scattering

Consider inelastic magnetic scattering. For this, let us return to the Eq. (2.49), which is the

total cross section of magnetic neutron scattering on a crystalline magnetic material. This

expression includes the product of the spin-spin and coordinate correlation functions Jαβii′ (t)

and Iii′(Q, t):

Jαβii′ (t) = 〈µ jα(0)µ j′β(t)〉,
Iii′(Q, t) = 〈e−iQ·R j(0)eiQ·R j′(t)〉.

(2.57)
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Each of these functions can be expressed as the sum of its value at t = ∞ and a time-

dependent part:

Jαβii′ (t) = Jαβii′ (∞) + J′αβii′ (t),

Iii′(Q, t) = Iii′(Q,∞) + I′ ii′(Q, t).
(2.58)

Using expressions (2.58), the total cross section of magnetic scattering (2.49) can be repre-

sented in the form of four terms, each of which corresponds to a certain type of magnetic

scattering. The term Jαβii′ (∞)Iii′(Q,∞) is giving rise to the elastic magnetic scattering. The

term Jαβii′ (∞)I′ ii′(Q, t) is responsible for the magnetovibrational scattering. As a result of

this kind of scattering, the orientation of the electron spins remains unchanged, that is, the

spin system is not excited. At the same time, magnetic interaction leads to the excitation

or de-excitation of a phonon in the crystal lattice, thus magnetovibrational scattering is

inelastic. The third term J′αβii′ (t)Iii′(Q,∞) gives inelastic magnetic scattering. Finally, the

last term J′αβii′ (t)I′ ii′(Q, t) describes scattering that excites both the spin and lattice degrees

of freedom.

For the general case of a crystal with a few magnetic ions per unit cell, the total magnetic

cross section is given by:

d2σ

dΩdE
=

kf

ki

(γr0)2

4πµ2B

∑

αβ

(δαβ − bQαbQβ)(1− e−E/(kBT))−1

×
∑

dd ′
e[Wd′(Q)+Wd(Q)](χ ′′)dd ′

αβ
(Q, E),

(2.59)

where

(χ ′′)dd ′
αβ

(Q, E) =4πµ2B f ∗d (Q) fd ′(Q)(1− e−E/(kBT))

×
∑

l

eiQ·Rl eiQ·(rd′−rd)
1

2πħh

∫ ∞

−∞
〈µ0dα(0)µld ′β(t)〉e−iE t/ħhdt

(2.60)

is the imaginary part of the generalized susceptibility χdd ′
αβ

(Q, E).

Magnetic scattering by spin waves

To evaluate the cross section for magnetic scattering by spin waves, we can utilize the general

formula (2.59). For a Bravais crystal, the imaginary part of the generalized susceptibility

can be written as

χ ′′
αβ

(Q, E) =πg2µ2B(1− e−E/(kBT))

×
∑

l

eiQ·Rl
1

2πħh

∫ ∞

−∞
〈S0α(0)Slβ(t)〉e−iE t/ħhdt.

(2.61)
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After the evaluation of the matrix elements 〈S0α(0)Slβ(t)〉, the inelastic neutron scattering

cross section from the spin waves can be represented by:

d2σ

dΩdE
=

kf

ki
(γr0)2

(2π)3

2v0

g2S
4

(1 + bQ2
z ) f 2(Q)e−2W(Q)

×
∑

τq

�〈nq + 1〉δ(Q− q−τ)δ[E −ħhω(q)]

+ 〈nq〉δ(Q + q−τ)δ[E +ħhω(q)]
	

,

(2.62)

where the thermal average of nq is

〈nq〉=
�

eħhωq/kBT − 1
	−1

. (2.63)

The cross section in Eq. (2.62) consists of two terms for one magnon creation and

annihilation. The delta functions in the cross section expression lead to the peaks in the

inelastic neutron scattering from spin waves which satisfy

Q = τ± q, (2.64)

E = ±ħhω(q). (2.65)

2.3 Instruments for neutron experiments

The main focus of this thesis is neutron spectroscopy. Some of the commonly used instruments

for inelastic neutron scattering measurements are briefly described here, in particular, triple-

axis (TAS) and time-of-flight (TOF) spectrometers.

2.3.1 Kinematics of a scattering experiment

Any scattering experiment consists in measuring the properties of a neutron beam before

and after scattering by a sample. The initial and final beams can be characterized by the

wave vectors ki and kf, respectively. In each act of scattering, the laws of conservation of

momentum and energy must be satisfied:

Q =kf − ki, (2.66)

ħhω=Ei − Ef =
ħh2

2mn
(k2

i − k2
f ), (2.67)

where k = 2π/λ, λ and mn are wave length and mass of a neutron. According to the

expressions (2.66, 2.67), when a neutron is scattered on a crystal, the momentum −ħhQ and

energy ħhω are transferred to it. If the scattering is elastic, then the energy and, accordingly,
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Figure 2.8: Evald circle.

the absolute value of the wave vector do not

change. In the case of inelastic scattering, en-

ergy is transferred to the crystal or from the

crystal; accordingly, the scattering occurs with

energy loss or gain of the neutron.

Understanding neutron scattering experi-

ments requires dealing with reciprocal space.

In Fig. 2.8, the points represent reciprocal lat-

tice vectors for a 2D crystalline solid. The

direction of the vector ki coincides with the

direction of the neutron beam incident on the

crystal. Vector ki is chosen so that it ends at the origin of the reciprocal space. A circle

of radius ki is centered at the start of vector ki. The diffraction conditions are satisfied if

this circle passes through some nonzero reciprocal lattice vector G. The diffracted beam

propagates in the direction of vector kf, which according to the momentum conservation

law is equal to ki + G, i.e. its end coincides with the reciprocal lattice point crossed by the

circle. This circle is called the Ewald circle, its analog in 3D space is the Ewald sphere.

In a case of elastic scattering, the magnitude of Q can be expressed as

|Q|= |G|= 2|ki| sin(θ), (2.68)

where 2θ is the angle between the incident and the final beam for the Bragg condition. This

expression represents the well known Bragg’s law. If we introduce the lattice spacing d and

express the wave number as k = 2π/λ, Eq. (2.68) can be written in the more familiar form:

λ= 2d sin(θ). (2.69)

In a diffraction experiment, it is possible to measure any point in reciprocal space. This is

achieved by choosing an appropriate value of ki and angle θ , which are responsible for the

magnitude of vector Q. The direction of vector Q in reciprocal space is adjusted by rotating

the sample relative to ki.

In the case of inelastic scattering, the length of the neutron wave vector changes, |ki| 6=
|kf|, thereby providing an energy exchange with the sample. In an experiment on inelastic

scattering, one of the vectors (|ki| or |kf|) is fixed, while the other changes. In the case of a

single-crystal sample, it is customary to use the relative momentum q, which is defined in

the first Brillouin zone. This is because the energies depend only on the momentum relative

to the nearest reciprocal lattice vector. Figure 2.8 illustrates the relationship between the
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Figure 2.9: Typical TAS scans. Vector diagrams of different scans: (a, b) constant Q scans with fixed ki and

kf, (d, e) constant E scans with fixed Q (rocking scan) and Q/Q (longitudinal scan). (c, f) Sketches of the

trajectories in the energy-momentum space covered by the corresponding constant-Q and constant-E scans.

momentum transfer vector Q, reciprocal space vector G, and vector q:

Q = G + q. (2.70)

From the vector diagram in Fig. 2.8, it is seen that every point in reciprocal space Q can

be accessed with an infinite number of combinations of ki and kf. What combinations are

usually preferred in practice and why will be explained below.

2.3.2 The triple-axis spectrometer

Typical scans

During each individual measurement on a classical TAS spectrometer, a signal is measured

at one specific point in four-dimensional (4D) energy-momentum space (Q,ħhω). In a typical

experiment, measurements are taken in the form of scans — sequences of measurements of

individual points taken in a specific order. There are two main types of scans — constant

energy ∆E and constant Q. These scans are shown schematically in Fig. 2.9. For the
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convenience of processing and interpreting the experiment, it is customary to fix the modulus

of the wave vector of the incident or scattered beam in scans with constant Q. Panels 2.9 (a,

b) contain vector diagrams for scans with constant ki and kf, respectively. Panel 2.9 (c)

shows the trajectory in the energy-momentum space corresponding to constant-Q scans.

Most of the Brillouin zone is normally measured with constant-Q scans. If one needs to

measure a stiff dispersion mode in the vicinity of the Brillouin zone center, it is reasonable

to use the constant-E scans. These scans assume measurements at a fixed value of energy

transfer and a simultaneous change in position in reciprocal space. Usually, either the length

(rocking scan) or the direction (longitudinal scan) of vector Q is fixed. Figures 2.9 (d, e)

show rocking and longitudinal scans, respectively. Figure 2.9 (f) shows schematically the

lines in the energy-momentum space that are covered during each of the constant-energy

scans. An elastic rocking scan is commonly used to accurately align the sample at the start

of the experiment. For this, the Bragg peak is selected with previously known coordinates in

reciprocal space. The instrument and the orientation of the specimen are adjusted in such a

way that the vector Q corresponds to the desired peak, and a rocking scan is performed in

the vicinity of the specified point of reciprocal space. Thus, we determine the direction of

vector Q corresponding to the desired structural peak. Continuing to align the sample, a

longitudinal scan should be performed. This will make it possible to refine the absolute value

of vector Q corresponding to a given Bragg peak. This procedure, carried out sequentially

on several peaks, allows one to determine the orientation of the sample with high accuracy,

so necessary for the correct processing of the measurement results. For dispersion mapping,

longitudinal scans are performed at nonzero energy transfer values.

Normalization of the counting rates

During the experiment, we count the neutrons arriving at the detector after being scattered

by the sample. The detector counting rate determines the scattering function S(Q,ω), the

determination of which is the goal of most neutron experiments. However, the counting rate

of detector Zdet depends not only on the scattering function but also on the characteristics

of the elements of the spectrometer itself [27]:

Zdet∝ Iinit(ki)Rmono(ki)
1

ki
S(Q,ω)Rana(kf)Pdet(kf), (2.71)

where Iinit(ki) is the intensity of the incident beam at used ki, Rmono(ki) and Rmono(ki) are

the reflectivities of the crystals of the monochromator and analyzer, and Pdet(kf) is the

efficiency of the detector. For correct data interpretation, each measurement in the scan

must be performed with the same statistics. For this, we use a monitor installed after the
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Figure 2.10: The classical setup of a typical triple-axis spectrometer IN8 (ILL, Grenoble). The three axes are

the monochromator axis, sample axis, and analyser axis. Adapted from [28].

monochromator and before the sample. Thus, each measurement in the scan is carried out

until the monitor detects a certain number of neutrons, which is expected to be:

Zmonitor∝ Iinit(ki)Rmono(ki)
1

ki
. (2.72)

Thus, because the count rate in the detector is normalized to the monitor, the real count

rate in the detector is:

Z ′det∝ S(Q,ω)Rana(kf)Pdet(kf). (2.73)

From this formula it can be seen that the count rate of the detector normalized to the monitor

depends only on kf and does not depend on ki. In the case of scans with constant kf [see

Fig. 2.9 (b)], this dependence disappears, which greatly facilitates data processing.

Instrument components

From its invention by Brockhouse in 1961 to the present day, the three-axis spectrometer

has been the most important instrument in neutron spectroscopy. Its uniqueness lies in

the ability to measure the scattering function S(Q,ω) at almost any point in the four-

dimensional (Q,ω) space. The instrument owes its name to its design, namely the presence

of three axes of rotation — the monochromator axis, the sample axis, and the analyzer axis.

Figure 2.10 shows a simplified diagram of a classic triple-axis spectrometer, namely the
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IN8 thermal-neutron spectrometer located at ILL, Grenoble. Let us follow the path of the

neutron beam and discuss the main elements of this instrument. A neutron beam coming

from a source, such as a nuclear reactor, has a wide spectrum of wavelengths and represents

the so-called “white” beam. When the beam hits the monochromator, it is Bragg-reflected

from the monochromator crystals (usually these are single crystals of copper, germanium,

beryllium, silicon, or pyrolytic graphite). Reflection occurs by Bragg diffraction of the

beam on a set of planes determined by the orientation of the monochromator crystal. As

a consequence of Bragg’s law, only neutrons of a strictly defined wavelength (reflections

of higher orders can be dealt with using special filters) are diffracted by this set of planes,

while others pass through the monochromator without scattering or experience incoherent

scattering. The angle between the direction of the initial “white” beam and the direction

of the monochromatic beam is 2θM, where θM is the Bragg’s angle for the corresponding

wavelength and the monochromator orientation. Thus, changing the θM and 2θM angles

of the monochromator, we select neutrons of the required wavelength λi, and, accordingly,

the wave vector ki. The monochromator is surrounded by a heavy shielding with a channel

that allows a monochromatic neutron beam to hit the sample. On its way to the sample, the

beam passes monitor 1, the purpose of which is to control the number of neutrons hitting

the sample and was discussed in more detail in the previous section on the normalization of

count rates. The diaphragm is used to cut the beam to the desired size. This is to minimize

harmful signals from the surroundings of the sample (e.g. aluminum or copper holder).

Having reached the sample, the neutron beam is scattered on it, and the reflected beam,

having deviated by an angle 2θS from the ki direction, continues its way to the detector. In

addition to the rotation of the spectrometer elements around the axis passing through the

sample table, the design of the instrument provides for the rotation of the sample at a given

angle ψ around its axis. This rotation is necessary to control the direction of the incident

beam ki relative to the direct and, accordingly, the reciprocal space of the sample under

investigation. Having passed the second aperture and monitor 2, the diffracted beam enters

the analyzer. The rotation of the analyzer selects the angle of reflection θA corresponding to

the particular final wave vector kf. After reflection from the analyzer, the beam finally enters

the detector, where it is registered. By varying the angles θM, θS, ψ, and θA, as well as the

absolute values of wave vectors ki and kf accordingly, it is possible to reach any point in the

horizontal plane of reciprocal space for any value of energy transfer. This plane is usually

called the scattering plane. In practice, however, the reachable region of (Q,ω) space is

limited by considerations of intensity and resolution.



2.3. Instruments for neutron experiments 47

Figure 2.11: The high-flux time-of-flight spectrometer IN4C (ILL, Grenoble). Reproduced from [28].

Today, the control of triple-axis spectrometers is entrusted to a computer. During the

pioneering studies of Brockhouse, the adjustment of all three axes of the spectrometer was

carried out manually, which required incomparably greater precision and accuracy from the

experimenter.

The classic TAS can only work in a step-by-step mode, measuring one single point in the

(Q,ω) space per instrument setup and has a long counting time. However, in recent decades,

many improvements in the design of spectrometers have been developed, thanks to which

it became possible to cover large areas of reciprocal space simultaneously. One concept is

to have multiple analyzers that cover a larger solid angle. This allows for increased data

acquisition speed and space coverage for each instrument setup. Examples of such solutions

are FLATCONE at ILL, MACS at NCNR, RITA-2 at PSI, CAMEA at ESS, and BAMBUS at

MLZ [29–33].

2.3.3 Time-of-flight spectrometer

This spectrometer owes its name to the fact that its operation is based on measuring the

time of flight (TOF) of scattered neutrons between the sample and the detector, the distance

between which is known with high accuracy. Thus, by measuring the time of flight, you can
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determine the speed of neutrons vn. This allows us to calculate their energy:

En =
1

2
mnv2n , (2.74)

where mn is the neutron mass.

TOF instruments can be divided into two classes: direct-geometry and indirect-geometry

spectrometers. In instruments of the first type, the energy of the incoming beam Ei is selected

using a crystal or chopper, and the final energy Ef is measured using a time of flight. In

spectrometers with indirect geometry, everything is exactly the opposite — the energy of

the incoming beam Ei is measured using the time of flight, the energy of scattered neutrons

Ef is determined using a crystal or filter.

Both types of spectrometers are used on both continuous and pulsed neutron sources.

Since the method requires knowing the flight time with high accuracy, neutrons must arrive

at the sample in the form of short pulses of about 20µs duration. Choppers are used to

create the time structure of the neutron pulses on continuous neutron sources. There must

be a time between such pulses, sufficient for all the neutrons scattered on the sample to

reach the detector.

As an example, consider the schematic drawing of the IN4C time-of-flight spectrometer

(ILL, Grenoble) shown in Fig. 2.11. The main components of this spectrometer, which are

responsible for the preparation of a monochromatic neutron pulse incident on the sample,

are two background choppers, a double-focusing monochromator, and a Fermi chopper.

Background choppers are fast-pulsing beam shutters that act as a low-pass filter. In this way,

they cut off most of the fast neutrons and gamma rays that can lead to background noise in

the measured spectrum. To eliminate fast neutrons, in addition to background choppers, a

sapphire filter can be installed in the beam. Following further, a neutron beam with a thermal

spectrum falls on a double-focusing monochromator – a mosaic consisting of 55 individual

single crystals. Here the selection of neutrons with a strictly defined energy takes place.

Thanks to its adjustable double focusing, the monochromator focuses the diverging beam

on a small sample surface, thereby providing the high intensity of incoming neutrons. Now

the focused monochromatic beam must be split into short pulses. For this, a Fermi chopper

is used. The Fermi chopper rotates at speeds of the order of 40,000 rpm, which makes it

possible to generate short pulses with a duration of 10–50 µs. Striking the sample, a short

parallel monochromatic neutron pulse is scattered by the sample. The typical time-of-flight

for neutrons between the sample and the detector is 1–5 ms. The neutron energy loss or

gain during scattering by a sample is analyzed by recording the time of arrival of neutrons at

the detector, as well as the angle at which they are detected. Using large arrays of detectors,

it is possible to obtain a lot of information about the structure and dynamics of the sample.
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The TOF spectra measured at various angles are further treated to obtain the scattering

function S(Q,ω).

Since spallation sources initially produce a short-pulse neutron beam structure, they

are ideally suited locations for TOF instruments. The accelerator provides a polychromatic

neutron pulse, which is subsequently converted into pulses of the required duration using a

chopper.

Summing up, one can say that a triple-axis spectrometer is an ideal tool for studying

dispersive excitations in single-crystal samples using energy and momentum scans. This

tool can only produce one data point per measurement but with a high Q resolution and

high intensity concentrated in a narrow region of energy-momentum space, making it

indispensable for parametric studies (e.g. measurements at a single wave vector as a function

of temperature, magnetic field, or pressure). High beam intensity and the possibility of

using multianalyser-multidetector systems make TAS a powerful tool for INS measurements.

At the same time, the TOF spectrometers have proven excellent for overview studies

of samples across the whole energy-momentum space. These tools are indispensable for

getting an overview of the excitation spectrum S(Q,ω) with high energy resolution at several

fixed values of external parameters. The development of short-pulse spallation sources has

provided a significant increase in beam intensity, making TOF an indispensable tool for

mapping the energy-momentum space that sometimes leads to unexpected discoveries.
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Chapter 3

ZnCr2Se4

3.1 Introduction

3.1.1 Chromium spinels

It is hard to overestimate the significance of the frustration concept in the field of modern

magnetism. Its essence lies in the competition between dominant terms in a Hamiltonian,

that generally destabilizes a physical system, and, in extreme cases, leads to a massive

degeneracy of the ground state [34]. These conditions allow higher-order perturbations

to become decisive, that otherwise play only a minor role and therefore are very hard to

study experimentally. When the perturbations are not sufficient to get rid of the degeneracy

completely, the entropic reasons can favor some state among the others via the so-called

“order-by-disorder” mechanism [35]. After all, there are systems that preserve extensive

degeneracy down to 0 T and fail to order despite strong interactions [36–38]. Thereby,

magnetically frustrated systems are characterized by extremely diverse physics and continue

to surprise researchers even after a vast amount of studies.

There are two main mechanisms of frustration in defect-free magnetic systems. The

first one is based on the geometrical properties of the lattice formed by magnetic ions in a

solid. The underlying triangular motifs prohibit simultaneous minimization of energy on

all pairwise bonds assuming only nearest-neighbor (NN) coupling. In the second one, two

or more inequivalent bonds of comparable strength contest among themselves. From the

experimental point of view, the former mechanism is more desirable, as it promotes the

frustration by the symmetry of the lattice, whereas the latter one relies on the fine-tuning

of the exchange parameters, and therefore can rarely provide order-free states. However,

the bond-frustrated systems often possess chiral ground states [3] and exhibit multiferroic

properties [39].
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Figure 3.1: (a) Pyrochlore-lattice structure, representative of the magnetic Cr sublattice in ACr2X4 spinels.

Small spheres represent Cr3+ ions. The pyrochlore lattice can be described either as an fcc arrangement of

separated Cr4 tetrahedra formed by NN bonds (large cubic unit cell, solid lines) or as a half-filled fcc lattice of

Cr3+ ions with a twice smaller lattice parameter (small cubic unit cell, dashed lines). We also show different

exchange paths corresponding to J1 ... J4 interactions that are discussed in the text. (b) The simple-cubic

Brillouin zone with dimensions 2π/a (central cube), and the two unfolded Brillouin zones corresponding to

fcc lattices with parameters a and a/2 (truncated octahedra). The high-symmetry points are marked according

to the large unfolded zone. Reproduced from Ref. [40].

The pyrochlore lattice is a 3D network of corner-sharing tetrahedra [see Fig. 3.1 (a)],

and it attracts a lot of interest as various spin models on this lattice give rise to the simplest

3D frustrated spin systems. Even for classical spins, the Heisenberg model on the pyrochlore

lattice hosts a wide range of different ground states. Considering only the antiferromagnetic

NN interactions results in a classical spin liquid [41,42], exhibiting no long-range magnetic

order down to zero temperature. This is explained by strong geometric frustration that

leads to a highly degenerate classical ground state. However, the inclusion of further-

neighbor interactions relieves this frustration and stabilizes various ordered ground states,

among them ferromagnetism, single- or multi-q spin spirals, nematic order, and other exotic

phases [43–47].

Chromium spinels provide great opportunities to investigate magnetic interactions be-

tween classical spins on the structurally ideal pyrochlore lattice. They belong to a large

family of A2+B3+
2 X 2−

4 spinels which crystallize to a cubic Fd3̄m structure. Its A, B, and X

ions occupy 8a (1/8, 1/8, 1/8), 16d (1/2, 1/2, 1/2), and 32e (x , x , x) Wyckoff positions,

respectively. Chromium spinels have the general formula ACr2X4, where A and X are non-

magnetic ions and Cr3+ is the magnetic cation in the 3d3 configuration [48]. Cr ions form

an undistorted pyrochlore lattice with S = 3/2 and L = 0. The classical Heisenberg model,

H =
∑

i j

Ji jSi · S j, (3.1)
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is justified by the negligibly small magneto-crystalline anisotropy [49–51]. Thus we consider

throughout the study Ji j ≡ Jn if sites i and j are nth neighbors [see Fig. 3.1 (a)].

Depending on the Cr-X -Cr angle, the dominant nearest-neighbor exchange coupling

varies from AFM (for X = O) to FM (X = Se, S) [48]. If dominant NN interactions between

the Cr spins residing on a pyrochlore lattice are AFM, the system is geometrically frustrated.

However, ab initio calculations show that most of Cr-spinels also have non-negligible higher-

order exchanges [48]. Generally, this diminishes the frustration and induces an order [46].

Geometrical frustration mechanism is implemented in some chromium oxides, such as

ZnCr2O4 and CdCr2O4 [52,53]. When the dominant interaction is FM, the lattice becomes

geometrically non-frustrated, and unlike in the AFM case, the further-nearest-neighbor

exchanges can promote the overall frustration. The bond frustration in responsible for the

formation of the helical ground states in ZnCr2S4, HgCr2S4, and ZnCr2Se4 far below the

Curie-Weiss temperatures [54–58]. In our recent study, the classical phase diagram was

constructed taking into account the exchanges up to the 4th nearest neighbor [40], fixing the

first one to FM. It shows a rich variety of possible states depending on the relative strength

of J2 and J3, among which are collinear FM, single-, and multi-q spin structures.

To estimate the range and relative strengths of coupling constants Jn in chromium spinels,

Yaresko [48] performed ab initio calculations to extract exchange parameters up to the

4th nearest neighbor for various compounds of the chromium spinels family. Calculations

showed that the NN interaction J1 changes gradually from antiferromagnetic in some oxides

to ferromagnetic in sulfides and selenides, while the next-nearest-neighbor (NNN) interaction

J2 is noticeably weaker than the antiferromagnetic J3 exchange parameter (see Table 3.1).

For the HgCr2O4 system, J1 can be even weaker than J2 (or comparable, depending on

the effective Coulomb repulsion U), so that the third-nearest-neighbor interaction J3 may

become dominant. Therefore, the existing theoretical phase diagram restricted to only NN

and NNN interactions [44] appears insufficient for a realistic description of these materials.

The importance of the two 3rd-nearest-neighbor exchange paths on the pyrochlore lattice has

also been emphasized for the spin-12 molybdate Heisenberg antiferromagnet Lu2Mo2O5N2,

where J ′3 and J ′′3 have opposite signs and dominate over J2. It was recently conjectured that

this may lead to an unusual “gearwheel” type of a quantum spin liquid [59].

3.1.2 Classical phase diagram for chromium spinels

An inspection of the theoretically predicted exchange parameters for various ACr2X4 spinels

presented in Ref. [48] reveals non-negligible exchange integrals up to the fourth-nearest
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Compound J2/| J1| J3/| J1| J4/| J1| ground state Refs.

HgCr2O4 0.1714 0.471 0 AFM [60]

ZnCr2S4 0.0395 0.198 –0.014 (00q) spiral [54]

CdCr2S4 0.0065 0.116 –0.015 FM [61]

HgCr2S4 0.0222 0.111 –0.013 (00q) spiral [55,56]

ZnCr2Se4 0.0102 0.169 –0.018 (00q) spiral [57,58]

CdCr2Se4 –0.0071 0.101 –0.013 FM [61]

HgCr2Se4 –0.0014 0.109 –0.013 FM [62]

Experimental values:

ZnCr2Se4 0.0118 0.170 –0.014 this work, [40]

Table 3.1: Ratios of the exchange constants in different chromium spinels after Ref. [48], taken for a moderate

effective Coulomb repulsion U = 2 eV. For each compound, its experimentally measured ground state is also

given: antiferromagnetic (AFM), ferromagnetic (FM), or proper-screw spin spiral. The bottom row shows

experimental values for ZnCr2Se4 estimated from our INS data. Reproduced from Ref. [40].

neighbor, J4, which is ferromagnetic in all the studied compounds. The third-nearest-

neighbor exchange constants are, on the other hand, antiferromagnetic. Note that the

pyrochlore lattice exhibits two inequivalent sets of third-nearest neighbors. Following

Ref. [48], we treat their corresponding exchange couplings as equal, J ′3 = J ′′3 ≡ J3, since

deviations are considered to be small. The classical ground state depends only on the

ratios between the exchange constants, which can be much more accurately predicted in

first-principles calculations than their absolute values. Here we restrict our attention to the

sulfides, selenides, and HgCr2O4 with ferromagnetic NN interactions, J1 < 0. In Table 3.1,

we summarize the calculated ratios J2/| J1|, J3/| J1|, and J4/| J1| for all seven compounds

considered in Ref. [48] (to be specific, we list the ratios for LSDA+U with U = 2 eV), along

with their experimentally determined ground states.

We determine the classical phase diagram using a direct energy minimization scheme [44].

We consider a pyrochlore lattice (periodic boundary conditions imposed) with typically L = 8

unit cells (containing 16 spins) in each spatial direction, resulting in N = 16 · L3 = 213 spins

in total. Starting from a random initial spin configuration, one randomly picks a lattice site

i and rotates its spin Si antiparallel to its local field defined as hi = ∂H/∂Si =
∑

j 6=i Ji jS j,

thereby minimizing the energy and simultaneously keeping the spins normalized. Once an
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energetically minimal spin configuration has been found, the object of interest is the spin

structure factor S(q) = 1
N

�

�

∑

j Sj exp (iq·r j)
�

�

2
with its magnetic Bragg peaks.

Figure 3.2: Classical J2–J3 phase diagram for J1 = −1

and J4/|J1|= −0.014 containing five phases: ferromag-

netic (FM), (00q) proper-screw spiral with the corre-

sponding q-value shown in color code, the cuboctahe-

dral stack (CS), the multiply modulated commensurate

spiral (MMCS), and the
�

1
8
1
2
7
8

�

phase. In addition, the

location of the seven spinel compounds with ferromag-

netic J1 is indicated by the symbols. For details see the

text and Table 3.1. Reproduced from Ref. [40].

The pure J1–J2 phase diagram already

has been computed [44]. As mentioned be-

fore, we consider only ferromagnetic J1. Ta-

ble 3.1 reveals that the couplings J4 of all

considered spinels are ferromagnetic and

roughly equal, J4/|J1| ≈ −0.014. Thus we

restrict our investigation of the phase dia-

gram to J4/|J1| = −0.014, but we checked

for all spinels that the ground state remains

unchanged when taking into account the

couplings listed in Table 3.1. Therefore

we map out the classical phase diagram for

−0.05≤ J2/|J1| ≤ 0.2 and 0≤ J3/|J1| ≤ 0.5

as presented in Fig. 3.2. We find five dif-

ferent phases: ferromagnetic (FM), (00q)

proper-screw spiral, cuboctahedral stack

(CS), multiply modulated commensurate spi-

ral (MMCS), and the
�

1
8
1
2
7
8

�

phase. Quite generally, we have observed for J2/|J1|> 0.1 and

J3/|J1| > 0.1 that the energy landscape becomes extremely flat. In order to yield reliable

results we had to increase system sizes drastically, for some parameter settings we even

used L = 32 corresponding to more than half a million spins. For dominant J1 < 0 we

find FM order, but both antiferromagnetic J2 and J3 destabilize the phase. For sufficiently

strong J3 > 0 (and not too large J2) there is a phase transition from the FM to the (00q)

helical phase. The wave vector q changes continuously from the phase transition line (q = 0)

up to a maximal value of q = 7/8 for large J3 (color-coded in increments of q = 1/8 in

Fig. 3.2). For J3 = 0 and J2/|J1| ≥ 0.2 we find the CS phase of Ref. [44] characterized by

Bragg peaks at three of the four
�

1
2
1
2
1
2

	

-type q vectors. Finite J3 stabilizes the phase down

to smaller values of J2. Further increase of J3 drives the system into the multi-q MMCS

phase which is also present in a very small parameter range of the J1–J2 phase diagram [44].

This state is characterized by four main Bragg peaks at
�

1
4
3
4
1
2

�

,
�

3
4
1
4
1
2

�

,
�

1
4
3
4
3
2

�

and
�

3
4
1
4
3
2

�

,

and a subdominant peak at
�

3
4
3
40
�

(or symmetry related combinations of these vectors,

respectively). Making J3 even larger eventually turns the system’s ground state into an

exotic phase with four dominant Bragg peaks at q =
�±1

8
1
2 ± 7

8

�

and
�±7

8
1
2 ± 1

8

�

. To our best
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knowledge, this phase has not been mentioned before in the literature, and we simply call it

the
�

1
8
1
2
7
8

�

phase.

The phase diagram in Fig. 3.2 contains all spinels listed in Table 3.1, and it is interesting

to compare the results of our calculations with available experimental data. CdCr2S4,

HgCr2Se4, and CdCr2Se4 have been reported to possess ferromagnetic ground states [61,62]

in agreement with our simulations. HgCr2S4 develops a (00q) spiral configuration with a

temperature-dependent pitch [55], but the experimental results emphasize a strong tendency

to ferromagnetic correlations [56]; in our phase diagram it is located in the FM phase close

to the spiral phase. The material of highest interest is, of course, ZnCr2Se4 where both

experiment and simulation consistently find a (00q) helix with q = 0.468 (or 0.28 Å−1).

ZnCr2S4 has been reported to host a similar proper-screw spin structure in the temperature

range 8 K < T < 15 K with q = 0.787 [54], which agrees fairly well with our simulated

value q = 0.625 based on the coupling constants from Table 3.1. This spinel undergoes

a structural phase transition at 8 K with a change of the magnetic order. The only oxide

in our list is HgCr2O4, where Bragg peaks corresponding to q1 = (100) and q2 = (101
2)

were measured [60]. The compound undergoes, however, a structural phase transition into

an orthorhombic phase [63] for which our pyrochlore description is of course inadequate.

Otherwise, according to its exchange couplings, HgCr2O4 would be located in the
�

1
8
1
2
7
8

�

phase.

We emphasize that our phase diagram, based on the ab initio parameters of Ref. [48],

agrees fairly well with the available experimental results. The major discrepancies are asso-

ciated with structural transitions of the spinels ZnCr2S4 and HgCr2O4, leading to distortions

or even different crystal structures. Since both effects cannot be captured by our simulations,

the discrepancies between experiment and theoretical modeling in these particular cases

are plausibly understood.

3.1.3 Crystal structure and spin-spiral order in ZnCr2Se4

Among the materials listed in Table 3.1, characterized by ferromagnetic NN interactions,

only ZnCr2Se4 and HgCr2S4 host an incommensurate spin-spiral ground state resulting from

the band frustration imposed by competition with further-neighbor interactions. The proper-

screw spin structure of ZnCr2Se4 has a short helical pitch, λh, of only 22.4 Å [57, 64], as

compared to that of 42 Å in HgCr2S4 (which in addition increases with temperature to ∼90 Å

at T = 30 K) [55]. This results in magnetic Bragg peaks in ZnCr2Se4 that are sufficiently

remote from the commensurate structural reflection, with a propagation vector (0 0 qh),

where qh ≈ 0.28 Å−1 [57,64]. Therefore, low-energy magnetic excitations emerging from
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different Bragg peaks are easy to resolve, which makes ZnCr2Se4 a perfect model material for

investigations of low-energy spin dynamics in symmetric (Yoshimori-type) [3,65] helimagnets

that are common among multiferroics [39,66]. Moreover, from the comparison of the Néel

temperature, TN = 21 K, with the Curie-Weiss temperature ΘCW = 90 K, the frustration

ratio of ΘCW/TN = 4.3 can be estimated, suggesting a considerable degree of frustration

in this system [67]. The small single-ion anisotropy energy in ZnCr2Se4 is evidenced by

the magnetic resonance data [50], by the gapless high-resolution neutron powder spectra

down to at least 0.05 meV in energy [68], as well as by the absence of any anisotropy-

induced deformation of the spin spiral. According to a recent study [69], such a deformation

would lead to the appearance of odd-integer higher-order magnetic Bragg peaks in neutron

diffraction that are absent in the neutron-diffraction patterns of ZnCr2Se4 [57,64].

ZnCr2Se4 crystallizes in the normal spinel (Fd3̄m) structure at room temperature having

8 formula units per simple-cubic unit cell with a lattice constant a = 10.497 Å [57, 70].

Cr3+ ions form a pyrochlore magnetic sublattice which consists of corner-sharing tetrahedra

[Fig. 3.1 (a)]. The sublattice can be described as a face-centered-cubic (fcc) arrangement

of equally oriented Cr4 tetrahedra (shown in a dark color) or as a half-filled fcc lattice of

individual Cr3+ ions with a twice smaller unit cell, as shown in Fig. 3.1 with dashed lines.

This allows us to introduce a larger unfolded Brillouin zone in reciprocal space, as shown in

Fig. 3.1 (b), by analogy with the procedure described for the structurally related compound

Cu2OSeO3 by Portnichenko et al. [71].

Whilst at high temperatures the crystal structure of ZnCr2Se4 is cubic, upon crossing

the AFM transition the crystal is seen to undergo a distortion which is concurrent with the

magnetic transition [72]. Initial measurements indicated that this was a cubic to tetragonal

distortion with an c/a ratio of around 0.99920(3) at 4.2 K [72]. Later measurements,

however, indicated that the crystal symmetry of the ground state is orthorhombic, where

a ∼= b > c and [54,73]. The concomitant structural and magnetic phase transitions would

suggest that the structural distortion is magnetically driven, which is supported by the

observation of a spin-lattice coupling at TN by ultrasound measurements [74] as well

as by neutron diffraction measurements [64]. It is seen that the spin spiral structure

propagates along the crystal axis which experiences the maximum distortion at the AFM

transition [70,72], which is the c axis in the previous definition.

The distinctive feature of a frustrated system is the presence of short-range correlations

way above the ordering temperature. In ZnCr2Se4 they were observed by µSR [68] below

∼70 K. The negative thermal expansion, that appears here at the same temperature scale [75],

can also be attributed to the correlated spin fluctuations; this however would also imply the
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a) b)

Figure 3.3: (a) Applied magnetic field vs. temperature phase diagram for ZnCr2Se4, reproduced from Ref. [74].

Here we superimpose the phase transition points deduced from our SANS data onto the original graph

constructed from magnetisation (M) and sound velocity (∆v/v) measurements. (b) Phase diagram of ZnCr2Se4
resulting from ac and dc magnetic susceptibilities, specific heat, and thermal conductivity measurements. The

low-temperature data reveals the presence of a quantum critical point. Reproduced from Ref. [77].

presence of strong spin-lattice coupling. The confirmation of this assumption we find in the

excellent study [76], where authors demonstrate the presence of the ferroelectric properties

in the compound. On the side, they showed how the structure adapt to the rearrangement

of the magnetic spiral from q = (q 0 0) to (0 q 0) through the extremely sensitive marker,

namely, the electrical polarization.

So far, the origin of the strong spin-lattice coupling in the Cr-spinels remains unclear. In

the high-temperature cubic phase, the Cr t2g shell is half-filled, quenching the orbital moment

to zero. Thus, no on-site spin-orbit interaction is expected. In the recent NMR study [78],

the authors observe the partial transfer of the magnetic moment to the neighboring Se-sites.

This mechanism can potentially induce finite orbital component and, therefore, facilitate

the spin-lattice interaction. The theory, although confirms this possibility, estimates only

insignificant corrections [48].

The magnetic phase diagram of the compound has been investigated with a number

of techniques: magnetization, ultrasound [74], and SANS [58]. The summarising phase

diagram is shown in Fig. 3.3. Below the ordering temperature, Cr3+ spins form an incommen-

surate helical structure with a propagation vector pointing along the [001] direction (blue

and red phases in Fig. 3.3 (a)). In the absence of an external magnetic field, there are three

possible domains with mutually perpendicular directions of the spin spirals, corresponding

to the cubic crystal symmetry. Upon application of a small magnetic field H < HC1, the

low-temperature structure acquires the FM component along the field direction. After the

field exceeds HC1, the domain selection takes place (blue curve in Fig. 3.3 (a)), favoring the
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helix with the smallest angle between the propagation vector and the field. This offers the

possibility to prepare a single-domain state either by cooling the sample in a magnetic field

or by applying and removing the field at base temperature. Further amplification of the field

decreases the conical angle of the magnetic structure until it collapses at the critical value of

HC2, which at 2 K is 6 T, although at this field the lattice is nearly ferromagnetically polarised,

and at low temperatures with increasing field the system gives way to a new high-field phase

which is proposed to be a spin-nematic state [74]. Here, the rate of polarization with the

field is greatly reduced in contrast to the spin-spiral state, yet the spin lattice continues to

polarise with the increasing field until HC3, where the system then enters the fully saturated

ferromagnetic state [74]. Both the domain selection and the saturation transition fields

decrease upon heating, but independent from the field direction [58].

The last revision of the phase diagram [77] reveals unusual dynamical properties at

the saturation transition that are manifested in the low-temperature T 2 behavior of the

specific heat, and a qualitative change in the thermal conductivity. It was shown, that upon

decreasing temperature, the high-field transition (at ∼10 T) approaches the saturation one,

with potential merging at 0 K (see Fig. 3.3 (b)). The authors interpret their findings with a

field-driven quantum phase transition at 6.5 T.

3.2 SANS measurements

The high-field phase between the saturation transition and the transition to a fully polarised

state is of great interest, as it remains uncharacterized in this compound. Initially, this area

on the phase diagram was interpreted as a spin-nematic phase [74] but the recent study

by Gu et al. [77] attributed it to a quantum critical regime. In particular, the arrangement

of the unsaturated components of the magnetic moments in real space remains a puzzle.

Using neutron scattering we searched for signs of magnetic ordering within this phase to

shed light on its character and demonstrate that the unpolarised component of the spins

above HC2 remain fully disordered without forming any long- or short-range spiral order.

3.2.1 Experimental method

The experiment was performed on a mosaic of co-aligned single crystals of ZnCr2Se4 with a

total mass ∼1 g, prepared by chemical transport reactions and characterized as described

elsewhere [74]. During the measurements, the magnetic field was applied horizontally,

i.e. perpendicular to the neutron beam. We used two orientations of the sample with

either the [1 0 0] or [1 1 0] crystallographic direction pointing along the field, whereas the
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Figure 3.4: Diffraction patterns from the magnetic structure of ZnCr2Se4, measured at a base temperature of

2 K for several magnetic fields. (a)–(c) Diffraction patterns for the magnetic field, aligned along the [1 0 0]

direction, in applied fields of (a) 0 T, (b) 3 T and (c) 7 T. (d) Diffraction pattern at 0 T for the realigned sample

so that the magnetic field could be applied along the [1 1 0] direction. Diffraction patterns are a sum over all

rocking angles corresponding to the observed Bragg reflections, presented on a logarithmic intensity scale,

and the axes qx and qy are in the laboratory frame. Reproduced from Ref. [58].

[0 0 1] direction for zero rocking angle was pointing along the neutron beam in both cases.

These two configurations correspond to the field orientation along the natural propagation

vector of the magnetic structure and halfway between two such propagation vectors in

neighboring magnetic domains, respectively. For the field parallel to [1 0 0], the sample

mass was approximately one gram, consisting of six crystals co-aligned with x-ray Laue

diffraction and mounted on an aluminum plate. For the field applied parallel to [1 1 0], only

four crystals from the mosaic were used. These were placed within a cryomagnet with a base

temperature of around 2 K and a maximum field of 11 T. Neutron diffraction measurements

were performed at the SANS-I instrument of the Paul Scherrer Institute, with the incoming

neutron wavelength set to 4.7 Å. The sample together with the magnetic field was then

rocked over the full range of angles corresponding to the accessible Bragg reflections, with

background measurements taken above TN to eliminate all nonmagnetic contributions to the

signal. All measurements were taken after cooling the sample to base temperature in zero

field and then applying the required magnetic field. The exception to this is a scan at the

base temperature which was taken in decreasing field and the following scan in temperature.

These exceptions are indicated where applicable.

3.2.2 Results

Figure 3.4 shows a selection of representative neutron diffraction patterns from each of the

distinct states and orientations observed during the experiment at the base temperature of

2 K. Each image is a sum over rocking angles in the vicinity of the Bragg condition for each

peak, set to a logarithmic intensity scale. Panels (a) – (c) show diffraction patterns from
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Figure 3.5: Dependence of the magnetic Bragg inten-

sity as a function of both applied magnetic field and

sample temperature. (a-b) Intensity of the Bragg re-

flections as a function of magnetic field applied along

(a) the [1 0 0] direction and (b) the [1 1 0] direction.

(c-d) Intensity of the Bragg reflections as a function

of temperature for magnetic fields applied along (c)

[1 0 0] and (d) [1 1 0]. The lines are a guide for the

eyes. Intensity is given in arbitrary units, and is not

comparable between the [1 0 0] and [1 1 0] directions

due to a change in sample mass between orientations.

Reproduced from Ref. [58].

the first orientation, where the magnetic field

was applied parallel to the [1 0 0] direction,

which is horizontal in these figures. The

diffraction pattern in panel (a) was taken in

zero field, and we can clearly see the two

sets of Bragg reflections resulting from the

domains aligned along the [0 1 0] and [1 0 0]

directions, which in this image are vertical

and horizontal, respectively. The third set of

Bragg peaks, along the one remaining [0 0 1]

direction, are not accessible within this exper-

imental geometry. Panel (b) is taken in an

applied field of 3 T, and it can be seen that do-

main selection has taken place as only one set

of Bragg peaks remains, which belong to the

domain whose propagation vector is parallel

to the magnetic field. Panel (c) was taken in an

applied field of 7 T. This is above HC2, within

the region of the phase diagram attributed to

a quantum critical regime, and no magnetic

signal can be seen in this data. This measure-

ment is also representative of data taken both

elsewhere in the spin-nematic phase and at higher temperatures, within the paramagnetic

phase. This indicates that the weak scattering within this data originates from the instrument

background. Panel (d) shows the diffraction pattern observed in the second experimental

configuration, where the sample was remounted in such a way that the field was also applied

horizontally but the crystal axes have been rotated by 45◦ such that the field is applied

along [1 1 0], equidistant from the propagation vectors of the two magnetic domains. This

diffraction pattern was observed at all fields, throughout the long-range ordered phase below

HC2, indicating that the propagation vector is insensitive to the direction of the magnetic

field. In this orientation, the domain-selection transition at HC1, was still observed as an

increase in the Bragg peak intensity of the two equivalent domains at the expense of the third

domain whose propagation vector is orthogonal to the applied magnetic field in Fig. 3.4 (d).

Figure 3.5 presents the intensity of the Bragg reflections within the domains which

are preferentially selected at HC1, illustrated in Fig. 3.4 as a function of both field and
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Figure 3.6: The scattering vector of the Bragg reflec-

tions from the magnetic structure as a function of

both field and temperature. (a) Scattering vector as

a function of magnetic field applied along the [1 0 0]

direction. (b) The same for magnetic field applied

along the [1 1 0] direction. (c) Scattering vector as

a function of temperature for magnetic field applied

along the [1 0 0] direction. (d) The same for magnetic

field applied along the [1 1 0] direction. The lines are

a guide for the eyes. Reproduced from Ref. [58].

temperature, for magnetic field orientations

along both [1 0 0] and [1 1 0]. The data in panel

(a) represent the intensity of the Bragg re-

flections as a function of the magnetic field,

applied after zero-field cooling along [1 0 0].

Here, we see that there is a rapid increase

in Bragg intensity at the low magnetic field,

in the same region where the domain selec-

tion transition takes place. Panel (b) shows

the corresponding intensity of the Bragg re-

flections as a function of the magnetic field

applied along the [1 1 0] direction. It shows

the same behaviour as for the field applied

along [1 0 0] in panel (a), however the mag-

nitude of the increase in Bragg intensity as

a result of domain selection is approximately

twice smaller. This is fully consistent with the

number of domains selected for each field ori-

entation, which is 1 out of 3 for H‖ [1 0 0] and

2 out of 3 for H‖ [1 1 0]. These measurements

were also taken after zero-field cooling, except

for one scan at 2 K, shown in figure 3.5(b), done with decreasing field. This measurement

shows no decrease of intensity across the domain selection transition, and instead, the signal

strength increases continuously down to zero field, indicating that the domain distribution

is not affected by the removal of a magnetic field. After accounting for the domain selection,

for all measurements, we observe a decrease in Bragg intensity as a function of increasing

magnetic field until it reaches zero at HC2, with no Bragg scattering observed between HC2

and HC3 within the covered region of momentum space. Panel (c) shows the intensity as a

function of temperature for magnetic fields of 0, 3, 5 and 5.5 T applied along [1 0 0]. All

curves show an order-parameter-like monotonic decrease, with a sharp fall-off in intensity

at TN. Panel (d) displays the diffracted intensity of the Bragg reflections for magnetic fields

applied along the [1 1 0] direction. This shows the same general behavior as for fields applied

along [1 0 0], where the intensity falls off with increasing temperature and reaches zero

at TN.
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Figure 3.6 shows the propagation vector of the magnetic structure, q, as a function of both

applied magnetic field and temperature. Panels (a) and (b) depict q as a function of magnetic

field applied along the [1 0 0] and [1 1 0] directions, respectively, at temperatures of 2, 6, 12,

14 and 16 K. Generally, the changes in q are weak, on the order of a few percent. The most

striking feature of the data in both of these panels is the rapid increase in the propagation

vector at low fields seen in the low-temperature measurements. This occurs between 1

and 2 T at 2 K, and it is clear from the diffraction patterns that this change in q coincides

with the domain-selection transition as the Bragg spots from domains perpendicular to the

magnetic field disappear. The location of this transition in a magnetic field is suppressed

with increasing temperature, and so it is not seen at higher temperatures. Panel (b) also

displays the scan at 2 K in decreasing fields, which expectedly shows no rapid change in q,

since domain selection only occurs when applying a magnetic field after zero-field cooling,

whereas the removal of the magnetic field at the base temperature does not alter the domain

distribution. We see that in both orientations, at higher temperatures, there is a slight

decrease in q when approaching the phase transition at HC2. Panels (c) and (d) show q

as a function of increasing temperature for the same two magnetic field directions. All

these measurements were taken after cooling the sample in zero field, except for the 0 T

measurement in panel (d), as this was taken after the decreasing field scan at 2 K shown

in panel (b), to remain in the domain-selected state for consistency with the other curves.

As a result of this different field history, the shallow maximum seen in the 0 T scan in

panel (c), where the magnetic field was applied along [1 0 0] after zero-field cooling, is not

observed in the same measurement for the field applied along [1 1 0] in panel (d), where

the domain selection transition was deliberately circumvented. Figure 3.3 (a) shows the

magnetic field and temperature phase diagram for ZnCr2Se4, reproduced from Ref. [74]. We

have superimposed the data points indicating either domain selection or a phase transition

that resulted from the fits to our field- and temperature-dependent SANS measurements

onto this diagram. Within the experimental uncertainty, our data for both field directions

are in excellent agreement with the previous measurements.

3.2.3 Discussion

Our neutron-scattering measurements revealed that the magnetic signal from the spin-spiral

structure always vanishes at the transition line HC2, regardless of whether the system is

undergoing a transition to the paramagnetic state or into the proposed high-field state

attributed to a quantum critical regime. We observed no other Bragg scattering within the

high-field phase. We can, therefore, establish the absence of any long-range order for the
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unsaturated component of the spin within this region. From our investigation, we can claim

the absence of any such signal within the q-range 0.062 to 0.30 Å−1, unless it lies outside

the (h k 0) scattering plane, which we consider unlikely given the robustness of the [1 0 0]

propagation direction of the spin-spiral observed throughout our measurements.

We observe the domain selection transition, which can be seen directly in figures 3.4 (a)

and (b), in agreement with earlier measurements [74]. Here, domains with propagation

vectors perpendicular to the magnetic field are removed, and the Bragg intensity in the

selected domains increase rapidly, as seen in figures 3.5 (a) and (b), as a result of the increase

in a volume fraction of the remaining domains. Furthermore, this transition is also seen in

the length of the scattering vector, q. As the system lowers the number of magnetic domains,

q increases, which corresponds to a slight decrease in the length of the spin-spiral structure

in real space. In the helimagnetic compound MnSi, an application of pressure causes a

shortening of the spin-spiral length [79]. Recalling that in ZnCr2Se4 the spin-spiral lies along

the axis that undergoes the greatest distortion at TN [70,72], these observations suggest that

in the multi-domain state the structural distortion induces a strain in the crystal lattice which

affects the spin-spiral length, which is then removed upon entering the single-domain state

at HC1. In general, both the magnetic structure and the phase transition lines are surprisingly

insensitive to the direction of the applied magnetic field. While there is a clear difference

in the selection of a single domain for fields applied parallel to [1 0 0] and the selection of

two domains for fields applied along [1 1 0], beyond this the magnetic field dependence for

both orientations are nearly identical. Firstly, the direction of the propagation vector of the

magnetic structure is rigid against varying magnetic field directions, only aligning along

main crystallographic axes rather than following the field direction. Secondly, the phase

diagram is identical regardless of the direction of the applied field, with both the domain

selection transition and the spin-spiral transition taking place at the same temperature and

field for both H‖ [1 0 0] and H‖ [1 1 0]. We illustrate this in figure 3.3 (a). It is clear that the

observed transitions fully coincide, within experimental uncertainties, irrespective of the

direction of the applied field. This is surprising, as one might expect the projection of the

magnetic field on the direction of q to be important, which differs by a factor of
p

2 between

the two experimentally chosen geometries. Even the domain selection transition, which is

expected to be sensitive to different angles between the applied field and the propagation

vector in different domains, turns out to be fully isotropic in ZnCr2Se4. We note that this

behavior is in line with the observation that the magnetization of ZnCr2Se4 also seems to be

invariant with respect to the direction of the applied magnetic field [76], indicating that

the development of the conical spin-structure proceeds at the same rate regardless of the
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projection of magnetic field onto the propagation direction of the spiral. We also see that

the change of the propagation vector as a function of both field and temperature is similar

for both directions of the applied magnetic field, with a reduction in q with increasing field

or temperature, shown in figure 3.6. However, the magnetic structure seems more robust

against this change in q for fields applied parallel to the crystal axis than for the field applied

along [1 1 0]. Therefore, while the precise magnetic structure does weakly depend on the

magnetic field direction, the magnetic polarization of the lattice and subsequent transitions

do not.

3.2.4 Summary

In summary, we have observed Bragg reflections from the helimagnetic structure in ZnCr2Se4,

finding a systematic variation with temperature and field of the spin-spiral pitch length.

Particularly, crossing the domain selection transition causes an abrupt jump in the prop-

agation length of the magnetic structure of the order of a few percent. With increasing

the field to HC2, we see a gradual order-parameter like decrease in the diffracted neutron

intensity in agreement with the observation that the screw-like magnetic structure transforms

into a conical spiral as the spin lattice polarises under the application of a field. Whilst

previous magnetization measurements have indicated that there still remains an unpolarised

component of the spins within the intermediate field phase directly above HC2, we observe

no magnetic Bragg reflections within this region, which is concurrent with the hypothesis

that this state does not break the translational symmetry of the crystal.

3.3 Pseudo-Goldstone magnons

3.3.1 Instrumental conditions for the experiments

We have used thermal- and cold-neutron time-of-flight (TOF) and triple-axis spectroscopy

(TAS) techniques to map out dispersions of magnetic excitations in ZnCr2Se4 in a broad

range of energies. The advantage of the TOF method is the possibility to obtain data covering

the whole 4-dimensional (4D) energy-momentum space (Q,}hω) in a single measurement.

Further, the combination of data collected with high-energy (Ei = 20 and 70 meV) neutrons

at the ARCS spectrometer [80] at ORNL, Oak Ridge, and low-energy (Ei = 3.27 meV or

λi = 5 Å) neutrons at the IN5 spectrometer [81] at ILL, Grenoble, provides an overview of the

whole magnon spectrum together with high-resolution imaging of low-energy excitations.
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Experiments were performed on a mosaic of the same co-aligned single crystals of

ZnCr2Se4 with a total mass ∼ 1 g, which were used for SANS measurements. For the ARCS

experiment (setup 1), the sample was mounted in such a way that the (H H L) plane was

horizontal. The experiment was performed without magnetic field in the multi-domain

state at the base temperature of T = 5 K. We performed rocking scans for incoming neutron

energies of 20 and 70 meV, which correspond to the energy resolution of 0.87 and 3.4 meV,

respectively, defined as the full width at half maximum of the incoherent elastic line. We

then processed the data using the HORACE software package [82,83]. The 4D datasets were

symmetrized during data reduction by combining statistics from all symmetry-equivalent

directions in the same Brillouin zone.

To confirm the positions of high-energy excitations at certain high-symmetry points of the

Brillouin zone, we supplemented our TOF data with thermal-neutron TAS measurements [84]

carried out using the IN8 thermal-neutron spectrometer at ILL (setup 2). Here the sample

was mounted inside an “orange”-type cryostat in the (H K 0) scattering plane, so that the

W (3 2 0) point could be reached. The spectrometer was operated with the vertically focused

pyrolytic graphite (PG) monochromator and analyzer, with the final neutron wave vector

fixed to kf = 4.1 Å−1, and a PG filter installed between the sample and the analyzer. The

collimation before and after the sample was set to 30′ and 40′, respectively. The resulting

energy resolution, calculated for this spectrometer configuration at 25 meV energy transfer,

was about 4 meV.

The cold-neutron TOF experiment [85] at IN5, ILL (setup 3), was carried out using

the same sample placed in the “orange”-type 2.5 T cryomagnet. This time the sample was

rotated about the (1 1 1) axis so that its (1 1 2) direction was pointing vertically (parallel to

the direction of the magnetic field). Correspondingly, the equatorial scattering plane was

spanned by the mutually orthogonal (1 1 0) and (1 1 1) vectors. In order to stabilize one

helimagnetic domain, we cooled down the sample in a vertical magnetic field of 1.5 T, with

B ‖ (1 1 2). In this geometry, the (0 0 qh) ordering vector forms an angle of 35.3◦ with the

field direction, leading to a twice larger projection of the field on this axis as compared to

the ordering vectors of the two other domains, (0 qh0) and (qh0 0), that are inclined at 65.9◦

with respect to the magnetic field. As a consequence, out of the three possible helimagnetic

domains, only the one with the propagation vector along the (0 0 1) direction is selected by

the applied field. When the base temperature of 1.5 K was reached, the magnetic field was

switched off, and the measurement was performed in the single-domain state in zero field

with the incident neutron wavelength of 5 Å and the elastic energy resolution of 0.084 meV.
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In this scattering geometry, neither of the three propagation vectors lies within the

horizontal scattering plane. However, they are sufficiently short to be covered by the out-of-

plane acceptance range of the position-sensitive TOF detector bank despite the limitation

from the vertical opening angle of the cryomagnet. Therefore, magnetic satellites of the

(0 0 0), (1 1 1), and (2 2 2) zone centers could be accessed in this configuration, which would

be unfeasible on most instruments restricted to the horizontal scattering plane. During

data reduction, the complete dataset was then converted into energy-momentum space

using the conventional basis vectors of the simple-cubic crystallographic unit cell, so that

the presentation of the data is not affected by the rotated sample mounting. We visualize

the obtained results by presenting 2D cuts through the 4D dataset that are taken along

high-symmetry momentum directions. To designate points in Q space, we will use reciprocal

lattice units corresponding to the simple-cubic unit cell (1 r.l.u. = 2π/a), whereas high-

symmetry points will be marked according to the unfolded Brillouin zone following the

standard notation for an fcc lattice [71].

Finally, we performed detailed spin-gap measurements at the cold-neutron TAS PANDA

[86] operated by JCNS at MLZ, Garching (setup 4). They were also carried out at zero field

in the single-domain state, which was prepared by field-cooling the sample in a field of

2.5 T using the 5 T vertical-field cryomagnet. The same mosaic sample was remounted with

its [001] axis pointing vertically, along the magnetic field direction, which resulted in the

selection of the domain with the (0 0 qh) ordering vector, whereas the accessible range of

Q space was restricted to the (H K 0) scattering plane spanned by the propagation vectors

of the two suppressed domains, (qh 0 0) and (0 qh 0). Their Bragg intensities were reduced

by a factor of ∼200 as a result of domain selection. To resolve these wave vectors at low

scattering angles (in the vicinity of the direct beam), we operated the spectrometer with

the horizontally flat but vertically focused monochromator and analyzer. The final neutron

energy was fixed at Ef = 3.0 meV (kf = 1.2 Å−1), providing an energy resolution of about

0.1 meV. A cold beryllium filter was used to suppress higher-order contamination from the

monochromator.

3.3.2 ZnCr2Se4 magnon spectrum in multi-domain state

TOF measurements in the multi-domain state

We will start the presentation of our results with the higher-energy data measured at the

ARCS spectrometer in the multi-domain state. Figure 3.7 shows typical energy-momentum

cuts along several high-symmetry lines in Q space that are parallel to the (0 0 1) and (1 1 0)



68 Chapter 3. ZnCr2Se4
En

er
gy

 (m
eV

)

Ei = 20 meV

0 1 2 3−3 −2 −1 0 1 2120 1 2120 1 2 3−3 −2 −1
0

2

4

6

8

10
(a)

0

10-3

L in (11L) (r. l. u.) L in (22L) (r. l. u.) H in (HH1) (r. l. u.) H in (HH2) (r. l. u.)

0 1 2 3−3 −2 −1 0 1 2 3−3 −2 −1 0 1 212 0 1 212
0

5

10

15

20

25

30

35

En
er

gy
 (m

eV
)

L in (11L) (r. l. u.) L in (22L) (r. l. u.) H in (HH1) (r. l. u.) H in (HH2) (r. l. u.)

Ei = 70 meV(b)

0

5×10-4

IN
S 

in
te

ns
ity

(a
rb

. u
ni

ts
)

IN
S 

in
te

ns
ity

(a
rb

. u
ni

ts
)

Figure 3.7: Energy-momentum cuts through the TOF data measured at the ARCS spectrometer (setup 1),

plotted along high-symmetry directions after symmetrization respecting the cubic crystal symmetry. All the

presented data were measured at the base temperature of 5 K with incident neutron energies of 20 meV (top

row) and 70 meV (bottom row). The momentum integration range in directions orthogonal to the image was

set to ±0.14 r.l.u. Reproduced from Ref. [40].

directions. Panels (a) and (b) show low- and high-energy datasets (Ei = 20 and 70 meV),

respectively. In the (2 2 L) and (H H 2) cuts, we clearly see intense magnon branches

emanating from incommensurate magnetic satellites of the (2 2 2) Bragg peak, while similar

modes near the (1 1 1) and (1 1 3) points are noticeably weaker. This behavior of the dynamic

structure factors can be explained using the approach of unfolded Brillouin zones, which

was detailed in Ref. 71 for another compound with a structurally similar magnetic sublattice.

One characteristic energy scale revealed in Fig. 3.7 (a) is given by the crossing point between

equivalent magnon branches in the (1 1 L) direction, located at ∼ 6.8 meV.

In Fig. 3.7 (b), we additionally observe high-energy modes near the top of the magnon

band, between 25 and 35 meV. While there is no energy gap separating the high- and

low-energy modes, unlike in Cu2OSeO3 [71], the intensity is certainly enhanced near the

top of the magnon band, as best seen along the (H H 2) direction (rightmost panel). This is

reminiscent of the situation in another recently studied helimagnet with a similar pitch of the

spin spiral, Sr3Fe2O7, where an intense and well separated high-energy magnon branch was

observed at a similar energy of 25 meV [87]. However, the low-energy behavior of the spin

waves in Sr3Fe2O7 is considerably different. There, apart from the steeply dispersing outward

branches, we observed M-shaped inner branches of helimagnetic spin waves connecting

the incommensurate ordering vectors, which extended up to ∼ 4 meV in energy. This form
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Figure 3.8: Constant-energy slices through the TOF data (setup 1) in the (HH L) plane, integrated within

different energy windows as indicated above each panel. The top and bottom rows of panels were measured

at the base temperature of 5 K with incident neutron energies of 20 and 70 meV. The out-of-plane momentum

integration range was set to ±0.1, ±0.14, and ±0.15 r.l.u. for panels (a), (b – d), and (e – h), respectively. The

white stripes in some panels originate in regions with no data coverage. Reproduced from Ref. [40].

of spin-wave dispersion, bridging the incommensurate magnetic satellites, is a common

feature of helimagnets with symmetric exchange interactions [65]. In the case of ZnCr2Se4,

however, this branch occurs at 10 times lower energies, so it cannot be seen in Fig. 3.7 (a)

above the elastic line. We will return to the discussion of this low-energy magnon branch

when presenting the cold-neutron data.

To visualize the magnon spectrum in Q space, we are presenting constant-energy cuts

in Fig. 3.8. All of them show intensity distributions within the (H H L) plane at different

energies, covering wave vectors up to (4 4 4). Here one can observe the complex hierarchy

of energy scales in the magnon dispersion. The low-energy cut at 1.7 meV in Fig. 3.8 (a)

displays clearly separated rings of scattering intensity around the zone centers. Stronger

modes are found near Γ points of the unfolded Brillouin zones, such as Γ (0 0 0), Γ (2 2 2),

and Γ (0 0 4), whereas weaker modes appear as replicas shifted by the (1 1 1) wave vector to

the centers of the folded fcc Brillouin zone [71]. Around 2.5 meV, these two modes start to

hybridize, leading to a saddle point in the spin-wave dispersion that can be most clearly seen

along the (H H H) direction at the right-hand side of Fig. 3.9 (a). Above the saddle-point

energy, the rings of scattering break into separated segments as shown in Figs. 3.8 (b – e).

Above 6.8 meV, which corresponds to the crossing of the bands in the (1 1 L) direction in

Fig. 3.7 (a), the weaker rings of scattering surrounding the (1 1 1) and (1 1 3) points cross

each other, resulting in a streak of intensity centered at (1 1 2) in Figs. 3.8 (c,d). Going
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even higher in energy, we observe an elliptical feature surrounding the X (0 0 2) point in

Fig. 3.8 (f) that finally shrinks in Figs. 3.8 (g,h) into a set of broad peaks corresponding to

the top of the magnon band at the unfolded-zone boundary at an energy of ∼ 30 meV. What

is not seen in this figure is the bottom of the high-energy magnon branch that results in an

intense peak centered at 24 meV at the W (1 2 0) point, which lies outside of the (H H L)

plane but can be well seen in Fig. 3.9 (b). A similar feature was also seen in the spectrum of

Cu2OSeO3 at the same Q point and nearly the same energy [71].

For a more comprehensive representation of magnetic excitations in ZnCr2Se4, we put

together energy-momentum cuts along a polygonal path which contains all high symmetry

directions in Q space, creating a “spaghetti”-type plot shown in Figs. 3.9 (a,b) for both

incident energies. Kinematic constraints lead to the lack of data at high energy transfer in

the first Brillouin zone, however these data have better signal-to-noise ratio at low energies.

Therefore, in Fig. 3.9 (b) we have overlayed data from the first Brillouin zone on top of those

obtained from equivalent points at higher |Q| to complete the missing parts of the dataset.

The stitching lines between high- and low-|Q| data can be recognized at the left-hand side

of the figure.

Experimental determination of the exchange constants

To extract the experimental exchange constants from our data, we compared them with

spin-dynamical calculations performed in the framework of linear spin-wave theory (LSWT)

using the SPINW software package [17,88]. The magnon spectrum was calculated using the

classical Heisenberg model with interactions up to the 4th shell of Cr neighbors [48]:

H =
1

4

4
∑

i=1

4
∑

n=1

zn
∑

j=1

Jn Si · S j, (3.2)

where i numbers Cr sites in the unit cell, and j runs over zn neighbors in the nth coordination

shell around the site i. In our notation, positive Jn stands for AFM coupling between Cr

S = 3/2 spins. The model does not differentiate between two inequivalent exchange paths

for third-nearest neighbors, J ′3 and J ′′3 , hence these two exchange parameters were assumed

equal. The pitch angle γ between the neighboring magnetic moments of the spin helix can

be found by solving the equation that minimizes the energy for classical spins:

J1 + J2 + 4J4 + 4(J2 + 2J3) cos(γ) + 6J4 cos(2γ) = 0. (3.3)

To enable direct comparison with our ARCS data, we modeled the multi-domain state by

averaging the calculated spectra for three possible orientations of the magnetic domains.

The calculations were first carried out with the theoretically predicted exchange parameters
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Figure 3.9: (a,b) Energy-momentum cuts thought the TOF data, taken with Ei = 20 and 70 meV at the ARCS

spectrometer (setup 1), combined into a “spaghetti”-type plot that covers all high-symmetry directions of the

unfolded Brillouin zone. (c) Results of our spin-dynamical calculations performed using the SPINW software

for the exchange constants given in Eq. 3.4, plotted along the same polygonal path in momentum space as the

data in panels (a) and (b). The calculations were averaged over three possible domain orientations to mimic

the multi-domain spin-spiral state realized in a zero-field experiment. Reproduced from Ref. [40].
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from Ref. 48, which were then iteratively adjusted to achieve the best agreement with

the measured spectrum. The resulting spectrum is shown in Fig. 3.9 (c) for the following

optimized values of exchange constants:

J1 = −2.876 meV, J2 = 0.034 meV,

J ′3 = J ′′3 = 0.490 meV, J4 = −0.041 meV.
(3.4)
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Figure 3.10: A typical energy scan measured at the

W(320) point with the IN8 spectrometer (setup 2) in

the multi-domain state, revealing two marginally re-

solved peaks centered at 23.7 meV (dash-dotted line)

and 30.8 meV (dotted line), in perfect agreement with

our spin-dynamical calculations. Reproduced from

Ref. [40].

The absolute value of the experimental NN

exchange constant J1 is approximately 50%

lower than the theoretical prediction. How-

ever, the signs of all interactions are well cap-

tured by the calculation. Their ratios, listed

in Table 3.1, show fair agreement (within

20%) with the results obtained in Ref. 48 for

an effective Coulomb repulsion U = 2 eV.

As an additional verification of the ex-

change parameters and the overall correct-

ness of our spin-wave model, in Fig. 3.10

we show a typical energy scan measured at

the IN8 thermal-neutron spectrometer at the

W (3 2 0) wave vector. It reveals an intense

peak corresponding to the bottom of the

high-energy magnon branch (cf. Fig. 3.9).

A closer analysis of the peak shape reveals that it consists of a stronger excitation centered

at (23.7± 0.2) meV and a weaker one at (30.8± 1.2) meV. The strong lower-energy peak

originates from the sum of two magnetic domains whose propagation vectors are directed

along the y and z cubic axes, whereas the weaker upper peak presumably consists of two

unresolved excitations originating from the x-oriented domains. Both the positions and the

relative intensities of the two peaks match fairly well with the spin-dynamical calculation

results in Fig. 3.9 (c).

3.3.3 ZnCr2Se4 magnon spectrum in the single-domain state

We proceed with presenting low-energy data measured at the IN5 spectrometer in the single-

domain state prepared by cooling the sample in magnetic field as described in Section 3.3.1.

To confirm that our domain-selection procedure was successful, in Fig. 3.11 (a) we show the

elastic-scattering intensity map in the (h 1 l) plane in the vicinity of the (1 1 1) structural



3.3. Pseudo-Goldstone magnons 73

Figure 3.11: Constant-energy cuts through the low-energy TOF data measured at IN5 (setup 3) in the single-

domain state. (a) Elastic intensity map in the (H1L) plane, demonstrating the selection of a single magnetic

domain with the propagation vector parallel to the c axis. (b – d) Constant-energy cuts at 0.2, 0.3, and 0.4 meV,

which show magnetic Goldstone modes emanating from the (0 0 ±qh) ordering vectors and pseudo-Goldstone

modes at the orthogonal (±qh 0 0) vectors, which are seen to merge at 0.4 meV. Note different intensity scales

in all images. Reproduced from Ref. [40].

Bragg reflection. This plane contains both the (1 1 1±qh) ordering vectors, where we observe

intense magnetic Bragg peaks, and the (1±qh 1 1) wave vectors, where the corresponding

peaks are suppressed by two orders of magnitude in intensity. We therefore conclude that

all the inelastic spectra obtained from the same dataset originate from a single magnetic

domain oriented along the c axis.

The inelastic data shown in Fig. 3.11 (b – d) represent equivalent cuts taken in the vicinity

of Q = 0, where the signal-to-background ratio is maximized. The constant-energy maps

exhibit two inequivalent types of low-energy spin-wave modes seen as elliptical features

emanating from the selected and suppressed ordering vectors. From different sizes of the

ellipses it is clear that the dispersion of the two modes is not identical. Moreover, the

intensity of the second mode corresponding to the suppressed Bragg reflection appears to

be even higher compared to the true Goldstone mode. The two modes merge at 0.4 meV

[Fig. 3.11 (d)], resulting in an inflection point (flattening) of the dispersion seen as bright

intensity spots along the diagonal directions of the image.

The dispersion of the same low-energy excitations can be seen in Fig. 3.12, where we

compare energy-momentum cuts passing through the (1 1 1±qh) ordering vectors with orthog-

onal cuts through the suppressed magnetic Bragg positions [panels (a) and (b),respectively].

In both directions, we observe Goldstone-like magnon modes that appear gapless within

the experimental energy resolution. Their dispersion resembles the M-shaped low-energy

magnon branch in Sr3Fe2O7 [87], with the top of the inner branch reaching to only 0.5 meV

for the Goldstone modes in Fig. 3.12 (a) and 0.28 meV for the pseudo-Goldstone modes

in Fig. 3.12 (b). A weak spin-wave band dispersing downward towards (111) can be seen

in both directions. The nearly twofold difference in the band width of the inner M-shaped
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Figure 3.12: Energy-momentum cuts through the IN5 data (setup 3), centered at the (111) wave vector and

taken along different directions: (a) along the (11L) line passing through the (1 1 1±qh) ordering vectors of

the field-selected domain; (b) average of the equivalent (1±h 1 1) and (1 1±h 1) directions passing through

the suppressed (1±qh 1 1) and (1 1±qh 1) ordering vectors; (c) along two orthogonal diagonal directions:

(1−h 1−h 1) (left) and (1±h 1∓h 1) (right), which pass through the 0.35 meV inflection point in the dispersion

in the plane orthogonal to the ordering vector. In the right part of panel (c), datasets for positive and negative

h have been averaged. Reproduced from Ref. [40].

branch connecting the magnetic Bragg peak with the zone center confirms that the two

modes seen in panels (a) and (b) are distinct. The behavior of the steeply dispersing outward

branch is, on the other hand, much more isotropic. We also show in Fig. 3.12 (c) diagonal

cuts that cross the inflection points of the spin-wave dispersion in the plane perpendicular to

the ordering vector. As can be estimated from the image, these inflection points are located

at 0.35 meV in energy.

3.3.4 Spin gap of the pseudo-Goldstone magnons

The presented IN5 data indicate that a soft magnon mode persists practically in all momentum

directions around the zone center at |Q| ≈ qh, by analogy with the result obtained by

Kataoka [89] for conical spin density waves with symmetric exchange interactions. This

results in a corrugated Mexican-hat-like dispersion schematically shown in Fig. 3.14. The

locus of dispersion minima along different directions forms an approximately spherical

surface in Q space of radius qh. On this surface, the spin gap ∆(θ ,φ) has two distinct

minima: at the ordering vector itself (θ = 0), forming the true (gapless) Goldstone mode

emanating from the magnetic Bragg peaks (filled dots), and pseudo-Goldstone modes at two

orthogonal wave vectors (θ = π/2; φ = 0 or π/2) corresponding to the would-be Bragg

peak positions of the suppressed magnetic domains (open dots). The latter are characterized

by a small spin gap ∆PG that can be only marginally resolved in our TOF data. Along all

intermediate directions, the spin gap is larger, reaching a maximum along the Brillouin-zone

diagonals.
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Figure 3.14: Schematic illustration of the low-energy magnon dispersion: (a) in the (HK0) plane orthogonal

to the ordering vector and (b) in the (H0L) plane passing through the ordering vector. Here ∆PG denotes the

gap of the pseudo-Goldstone magnon branch, φ and θ are spherical angles. The filled and open dots represent

Bragg peaks of the selected and suppressed magnetic domains, respectively. Reproduced from Ref. [40].
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Figure 3.13: (a) Several unprocessed energy scans from

the triple-axis spectrometer PANDA (setup 4), measured at

the minimum of the spin-wave dispersion in the plane or-

thogonal to the ordering vector (θ = π/2) along different

directions with φ = 0◦, 8◦, 15◦, 26◦, and 45◦. (b) Angu-

lar dependence of the minimum energy in the spin-wave

dispersion ∆(θ , 0) and ∆(π/2,φ) extracted from the IN5

and PANDA measurements. The solid line is an empirical

fit described in the text. Reproduced from Ref. [40].

To measure the angular dependence

of the spin gap directly, we performed

additional measurements at the PANDA

spectrometer within the θ = π/2 plane

along several radial directions relative to

the zone center for a number of differ-

ent φ angles. The measurement at each

angle was done in three steps. First, we

performed an energy scan at |Q| = qh

(assuming that the locus of the disper-

sion minima is spherical) to measure the

approximate onset energy of magnetic

scattering. Then, we did a radial scan

at an energy characterized by the maxi-

mal slope of the spectrum, in order to find

the true location of the dispersion mini-

mum that could slightly deviate from qh

for various angles. Finally, we repeated

the energy scan at the new wave vector

|Q| for every angle. These final energy

scans are shown in Fig. 3.13 (a). It can

be seen that the signal at φ = 0, at the

location of the pseudo-Goldstone mode, has a finite energy that is clearly resolved from the

elastic line. The maximum of inelastic scattering intensity is observed around 0.15 meV. A
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more robust estimate of the gap energy results from fitting both the IN5 and PANDA data from

different radial directions, which resulted in the angular dependence of the spin-gap energy

shown in Fig. 3.13 (b). We can see that the results of both TOF and TAS measurements are in

good agreement. The accuracy of our spin-gap measurement benefits from the extrapolation

of the data taken away from the ordering vector, where the peak is better resolved, toward

the low-energy region. We fitted the combined dataset in Fig. 3.13 (b) with the simple empir-

ical function ∆(θ ,φ) =
q

∆2
PG + A2 sin2 2φ+ B2 sin2 2θ , which resulted in the experimental

spin-gap value ∆PG = 0.166(7) meV. On the other hand, recent high-resolution powder data

on ZnCr2Se4 demonstrate a gapless spin-wave spectrum down to at least 0.05 meV [68],

which indicates that the anisotropy gap at the ordering vector (0 0 qh) must be negligibly

small, at least a factor of 3 smaller than ∆PG.

3.3.5 Magnon-magnon interactions

A remarkable hallmark of the observed pseudo-Goldstone modes is that LSWT predicts them

to be gapless in the absence of magneto-crystalline anisotropy [89] at wave vectors where

no magnetic Bragg reflections are found below TN. This is in contrast to magnetic soft modes

observed, for example, in α-CaCr2O4 [90], which originate from a proximity to another

phase with a different magnetic ordering vector and therefore have a much larger gap that

is well captured by LSWT. The existence of gapless modes without an underlying Bragg

reflection would violate the Goldstone theorem, yet this contradiction can be resolved by

taking into account quantum fluctuation corrections to the linear spectrum.

As long as the low-energy magnon spectrum is concerned, spin systems can be analyzed

in the frame of the nonlinear sigma model [91] or mapped onto a one-sublattice Heisenberg

model. Therefore, to obtain an estimate of the pseudo-Goldstone spin gap, it is sufficient

to consider a simplified model involving J1 < 0, J2 > 0, and J4 > 0 interactions on a

simple-cubic lattice,

H = J1
∑

〈i, j〉
SiS j + J2

∑

〈〈i, j〉〉
SiS j + J4

∑

〈〈〈〈i, j〉〉〉〉
SiS j, (3.5)

where the summations are taken over the 1st, 2nd, and 4th nearest neighbors, respectively.

This minimal model results in the correct pitch angle γ ≈ 0.23π and similar spin-wave

velocities as those realized in ZnCr2Se4 for the following values of parameters: J2 = 4 meV,

J4 = 1.8 meV, and J1 = −4(J2 + J4 cosγ).

To consider the magnon dispersion in the helical spin structure it is worthwhile to

introduce local spin quantization axes x , y, z, such that z‖〈S〉 and y‖Q. The Holstein-

Primakoff transformation in the lowest 1/S order followed by the Bogoliubov transformation
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yields the magnon Hamiltonian

Hm =
∑

q

ωqα
†
qαq, (3.6)

with the dispersion

ωq = S
q

(Jq − JQ)(Jq+Q + Jq−Q − 2JQ)/2, (3.7)

where

Jq =
∑

R

JR exp(iq ·R). (3.8)

This magnon dispersion acquires six zeros at the (0 0 ±qh), (0 ±qh 0), and (±qh 0 0) points.

Figure 3.15: The diagrams which give 1/S corrections

to the spectrum: (a) ω(4)
q and (b) Σ11(ω,q). Repro-

duced from Ref. [40].

Quantum fluctuations given by the next or-

ders in the 1/S expansion of the Holstein-

Primakoff transformation open a gap at the

(0 ±qh 0) and (±qh 0 0) points orthogonal to

the propagation vector [91–94]. The lowest

order of terms which gives such corrections

is represented by three- and four-magnon

processes shown in Fig. 3.15. Both ω(4)
q and

ReΣ11(ω,q) terms contribute to the magnon dispersion. The imaginary part of the self-

energy term ImΣ11(ω,q) describes the magnon damping Γq:

ω̃q + iΓq =ωq +ω(4)
q +Σ11(ω,q). (3.9)

We calculated the magnon dispersion ω̃q at the helix propagation vector Q = (0 0 qh)

and at the orthogonal wave vector Q′ = (qh 0 0). Our calculation shows that in the first

case the quantum fluctuation corrections cancel out as expected in the 1/S expansion

theory, whereas at the second vector Q′ a spin-wave gap opens up with a magnitude ∆PG =

0.18 meV, leading to a pseudo-Goldstone magnon observed in the experiment. The good

agreement between the calculated and measured values of the spin gap suggests that the

described quantum-fluctuation corrections to the LSWT are fully sufficient to describe the

experimentally observed magnon spectrum. It is worth noting that the experimentally

measured spin gap is expected to have an additional contribution dictated by the anisotropy

energy, which is nonzero in any real material. However, the quantitative agreement of the

calculated and measured gap magnitudes indicates that this contribution in ZnCr2Se4 is

not dominant. Inclusion of a finite single-ion anisotropy term in our model would reduce

the estimate of the spin gap from pure quantum-fluctuation effects even further, hence the

experimental value of ∆PG should be seen as an upper estimate for the pseudo-Goldstone

spin gap in a purely Heisenberg system.
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3.3.6 Summary

Using inelastic neutron scattering, we investigated the complete spin-wave spectrum of

ZnCr2Se4 in the whole of reciprocal space and across two orders of magnitude in energy.

We found two distinct types of low-energy magnon modes: the Goldstone mode along the

helix propagation vector at (0 0 ±qh) and two pseudo-Goldstone modes at (±qh 0 0) and

(0 ±qh 0). Our simulation in the framework of the LSWT provides a perfect description

of the spectrum except at the pseudo-Goldstone points, where LSWT predicts a gapless

mode, while the experiment shows a gap of the order ∆PG = 0.17 meV. This gap can be

quantitatively reproduced in the calculations by including leading-order corrections due to

quantum fluctuations arising from magnon-magnon scattering processes.

The scattering channels contributing to the magnon lifetime in insulators are usually

very weak and require elaborate time-consuming experiments with a micro-electronvolt

energy resolution to be quantified in direct measurements [95]. At the same time, here we

demonstrated that the pseudo-Goldstone magnon gap in helimagnets, first measured in our

work, represents a well-defined and experimentally accessible quantity of the spin-wave

spectrum that carries indirect information about such magnon-magnon interactions. In spite

of its relatively simple experimental determination, the spin-gap magnitude ∆PG cannot be

expressed analytically as a function of the Hamiltonian parameters and is therefore useful

for testing spin-dynamical models beyond LSWT.

The existence of nearly gapless spin-wave modes propagating in the direction orthogonal

to the ordering vector is expected to leave measurable signatures in the low-temperature

thermodynamic and transport properties of the material, as well as in its response to

local probes, at temperatures of the order of ∆PG � TN. In a cubic system that has two

pseudo-Goldstone modes per one Goldstone mode, the contribution of the former would

dominate in all processes governed by low-energy magnon scattering, including but not

limited to magnetic contributions to the low-temperature specific heat and magnon heat

conduction [96]. In the presence of weak anisotropy, a two-gap structure in the magnon

density of states is expected. To the best of our knowledge, these effects still await their

detection in future experiments performed on samples in the single-domain magnetic state.

Our present results should apply not only to simple helimagnets but also to a much broader

class of materials in which the magnetic propagation vector is spontaneously chosen from

multiple structurally equivalent alternatives upon crossing a transition to the magnetically

ordered state.



3.4. Magnetic field evolution of the helimagnon spectrum 79

3.4 Magnetic field evolution of the helimagnon spectrum

3.4.1 Instrumental conditions for the experiments

We have used cold-neutron TOF and TAS techniques to investigate magnetic field dependence

of the pseudo-Goldstone mode in the ZnCr2Se4 sample [97]. The TOF method allows one to

map out the whole four-dimensional energy-momentum space in one measurement, while

TAS provides the ability to measure the given points of the reciprocal space with maximal

resolution.

The experiments were performed on the same pre-aligned mosaic of single crystals

that was used for the previous measurements [40]. The TOF experiment [98] (setup 5)

was performed at the LET [99] cold neutron multi-chopper spectrometer at ISIS, UK. The

energy of the incoming neutrons Ei = 2.01 meV provided us with energy resolution of 0.04

meV, determined as the full width at half maximum of the incoherent elastic line. The

sample was placed into the 9 T cryomagnet with its c axis parallel to the magnetic field

and (H K 0) scattering plane. This alignment allows us to select the magnetic domain with

(0 0 qh) propagation vector, having propagation vectors (qh 0 0) and (0 qh 0) of two suppressed

domains in the accessible range of the reciprocal space. The measurements were done at the

base temperature T = 2 K in a single-domain state which was prepared by cooling the sample

in the magnetic field of 2 T. The domain selection procedure is described in Section 3.3.1.

The collected data were processed using the HORACE software package [82,83]. To improve

the statistical quality of the data we combined the signal from symmetrically equivalent

reciprocal space points within the same Brillouin zone.

To study a field dependence of the dispersion more carefully, the TOF data was supple-

mented with TAS measurements (setup 6) which were performed at the THALES [100] low

energy spectrometer at ILL, Grenoble. Here the sample was mounted in the 10 T cryomagnet

in the same orientation as in TOF experiment – with its c axis parallel to the magnetic field.

The instrument was operated with fixed final neutron energy Ef = 2.5 meV ( kf = 1.1 Å−1).

Pyrolytic graphite PG (002) monochromator and analyzer together with a cold beryllium

filter were used to provide a high flux and suppress higher-order contamination from the

monochromator. To measure selected points with increased resolution the collimation of

the scattered beam was used.

3.4.2 TOF measurements

The main goal of our INS measurements is to investigate the magnetic-field dependence of

the previously discovered pseudo-Goldstone magnon modes in ZnCr2Se4 [40] and reveal
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their relationship to the field-driven QCP suggested by Gu et al. [77]. In the paramagnetic

phase above TC, the three pairs of wave vectors (±qh 0 0), (0 ±qh 0), and (0 0 ±qh) are

equivalent because of the cubic symmetry. Helimagnetic order breaks this discrete symmetry

by spontaneously selecting one of the cubic directions as the propagation direction of the

spin spiral. For the sake of unambiguity, let us assume that this direction is (0 0 ±qh).

Consequently, all spins forming the helix are constrained to the ab plane. Under the

assumption of Heisenberg symmetry, which holds to a very good approximation for Cr3+

spins, the system remains invariant under continuous U(1) spin rotations within the ab

plane. As a consequence, Goldstone modes emanating from the (0 0 ±qh) ordering vectors

remain gapless down to the lowest temperatures (the upper limit for the spin gap at these

points, set by previous INS experiments, is 0.05 meV [68]).

Under the assumption that the lattice symmetry remains cubic, so that no spin-space

anisotropy is imposed by the lattice distortions, linear spin-wave theory (LSWT) predicts

gapless magnon modes also at the two orthogonal pairs of wave vectors, (±qh 0 0) and

(0 ±qh 0), which can be seen as an accidental degeneracy, because in contrast to the true

Goldstone modes, the zero spin gap at these points is not enforced by the symmetry of

the Hamiltonian. As a consequence, the degeneracy can be weakly lifted by fluctuations,

opening up a small magnon gap at the corresponding wave vectors [101] and resulting in

pseudo-Goldstone modes that have been experimentally observed in ZnCr2Se4 by neutron

spectroscopy [40]. In the case of continuous degeneracies, this phenomenon is known as

“order by disorder” [102,103], whereas in ZnCr2Se4 the degeneracy is discrete, resulting

in one pair of Goldstone and two pairs of pseudo-Goldstone modes, well separated in the

Brillouin zone.

According to our spin-wave calculations in zero magnetic field, quantum-fluctuation

corrections to the spin-wave spectrum are qualitatively similar to those resulting from LSWT

in the presence of weak easy-plane anisotropy (in the plane orthogonal to the spiral direction).

Both effects break the cubic symmetry of the magnon dispersions by opening a gap at the

pseudo-Goldstone wave vectors while keeping the true Goldstone modes gapless. In the

first case, this symmetry breaking is spontaneous, whereas in the second case a preferred

axis is explicitly introduced in the magnetic Hamiltonian to reflect the tetragonal distortion

resulting from the spin-lattice coupling. On the one hand, experimentally observed pseudo-

Goldstone magnon gap ∆PG ≈ 0.17 meV shows reasonable agreement with the theoretical

estimate that takes into account quantum fluctuations (three- and four-magnon processes)

even in the cubic setting [40]. This offers solid evidence that the anisotropy in the spin-wave

spectrum results mainly from quantum-fluctuation corrections beyond LSWT. On the other
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Figure 3.16: The neutron TOF spectrum of ZnCr2Se4, measured in magnetic fields of 0, 3, 6, and 8 T, applied

along the [001] direction. The top row of panels (a–d) shows the corresponding constant-energy cuts in the

(H0L) plane, integrated within ±0.03 meV around 0.17 meV energy transfer. The bottom row (e–h) shows

energy-momentum cuts along the radial directions connecting the Γ point with the local minimum of the

dispersion, as shown with dashed lines in (a–d). Integration ranges in momentum directions orthogonal to the

plane of the figure are approximately ±0.05 Å−1. The vertical dotted lines in (a) and (b) indicate the direction

of energy-momentum cuts in Fig. 3.17. Reproduced from Ref. [97].

hand, small easy-plane anisotropy cannot be fully excluded in the presence of a tetragonal

lattice distortion, even if our results outlined in Section 3.5 indicate that the corresponding

distortions are minor, and due to the smallness of spin-orbit coupling, the resulting spin

anisotropy should be negligible. At the qualitative level, the contribution of magnetostrictive

distortions to the easy-plane anisotropy and, consequently, to the pseudo-Goldstone gap

energy remains unknown. Estimating it from first principles would require more elaborate

relativistic calculations, taking into account both lattice and spin degrees of freedom, which

are currently beyond reach.

To shed light on this problem, we have measured the low-energy magnon spectrum of

ZnCr2Se4 in magnetic fields applied along the [001] cubic axis. Figure 3.16 shows represen-

tative cuts through the TOF data at 0, 3, 6, and 8 T. The top row of panels [Fig. 3.16 (a–d)]

presents constant-energy cuts in the (H0L) plane at 0.17 meV. This energy corresponds to

the pseudo-Goldstone magnon gap in zero field [40]. The red dashed lines connect the

center of the Brillouin zone with the local minimum in the dispersion. In the panels below

[Fig. 3.16 (e–h)], corresponding momentum-energy cuts along these lines are shown.
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The spectrum in Figs. 3.16 (a, e) was measured in zero field. In agreement with our

previous report [40], we see clear intensity maxima at (±qh 0 0), near the bottom of the

pseudo-Goldstone modes. Their positions are equivalent (in the cubic setting) to the ordering

vector, which is oriented along the c axis and cannot be reached in this experimental

configuration. The dispersion has a sharp minimum, which is asymmetric even in the direct

neighborhood of the ordering vector. On the left side from the minimum, closer to the Γ

point, the dispersion forms an arc with a maximum around 0.3 meV. On the right-hand side,

the magnon branch rises linearly in energy and has a much steeper dispersion, forming a

beak-like shape. The minimum of the dispersion corresponds to the pseudo-Goldstone gap

energy. In the constant-energy plane in Fig. 3.16 (a), the magnetic signal appears in the

form of sharp spots at (±qh 0 0), with no additional intensity maxima in the field of view.

The application of a 3 T magnetic field, approximately half way to the QCP, qualita-

tively changes the shape of the dispersion. In the constant-energy plane in Fig. 3.16 (b),

the intensity now splits into four spots, which indicates that the dispersion minima are

shifted up and down with respect to the (H K 0) plane and no longer coincide with the wave

vectors equivalent to the magnetic ordering vector in the cubic setting. The momentum-

energy cut through one of these minima in the dispersion, shown in Fig. 3.16 (f), re-

veals a markedly different spectrum to the beak-shaped one in zero field. Even though

the spin gap remains nearly unchanged, the dispersion no longer has a cusp and lacks

the linear part on the right-hand side, approaching a parabolic shape. The comparison

of 0 and 3 T cuts in Fig. 3.17, taken through the corresponding minima in the disper-

sion along the transverse momentum direction [vertical dotted lines in Fig. 3.16 (a, b)],
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Figure 3.17: The neutron TOF spectrum of ZnCr2Se4. The panels a and

b show the energy-momentum cuts taken along the (0 0 L) direction

passing through the pseudo-Goldstone magnons for magnetic fields 0

and 3 T respectively. Reproduced from Ref. [97].

indicates that the pseudo-

Goldstone mode splits along

the magnetic-field direction

into two identical soft modes

with a parabolic dispersion.

The appearance of a cross-

ing point of the two disper-

sion branches at the center

of Fig. 3.17 (b) suggests that

there are two different disper-

sion curves, possibly originat-

ing from magnetic domains

with opposite chirality.
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At a twice higher magnetic field of 6 T, the system is in the immediate proximity to the

field-driven QCP, where the incommensurate structure gets suppressed due to the collapse

of the conical angle and continuously transforms into the field-polarized FM phase. The

corresponding INS spectrum is presented in Figs. 3.16 (c, g). In contrast to the previous

cases, the gap in the spin-wave spectrum closes, and a ring of intensity can be seen in the

constant-energy cut at 0.17 meV. Despite the proximity of the system to a collinear field-

polarized state, spin fluctuations are still concentrated in the neighborhood of a sphere with

radius qh, centered at the origin. Two hollow ellipses can be recognized around (±qh 0 0)

and (0 0±qh), where the gapless Goldstone modes are now located, and the spin-wave

dispersion drops below the level of the constant-energy cut. Despite the magnetic field,

which breaks the equivalency of the [100] and [001] axes, the spectrum restores its fourfold

symmetry in the (H 0 L) plane at the critical field. The momentum-energy cut in Fig. 3.16 (g),

parallel to the qx direction, shows a nearly symmetric parabolic dispersion curve with a

vanishing energy gap. There is a small residual difference in the slopes on opposite sides

of the dispersion curve, but neither shows the signs of inflection within the available data

range, unlike at smaller fields.

Finally, at even higher fields above Bc, i.e. in the field-polarized FM phase, the spin gap

reopens again. This can be well seen in the 8 T data shown in Figs. 3.16 (d, h). The value of

the spin gap at this field is above the 0.14–0.20 meV integration range of the constant-energy

cut, hence no spin-wave intensity can be seen in Figs. 3.16 (d). The magnon dispersion in

the momentum-energy cut in Fig. 3.16 (h) is shaped as a symmetric parabola with an energy

gap of 0.25 meV.

3.4.3 TAS measurements

The gap closing without the subsequent formation of the new order corresponding to the

wave-vector where it occurred requires more careful study. Therefore, we run additional

measurements on the TAS spectrometer THALES with vertical 10 T magnet (setup 6). Due to

the technical constraints, we were restricted to [H K 0] scattering plane. For each magnetic

field we measure energy spectrum at (±qh 0 0). The results are shown in Fig. 3.18, where

the horizontal axis corresponds to the magnetic field strength, whereas the vertical one

represents the neutron energy transfer. The color indicates the intensity of neutron flux.

During the measurements we found no appreciable shift in the position of the minimum

along [H 0 0] direction, therefore, the figure presents the spectrum at a fixed (reciprocal

space) point.
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Figure 3.18: Magnetic-field dependence of the INS spec-

trum at (qh 0 0), measured as a function of magnetic

field applied along the [001] direction. The color map

shows INS intensity measured on a TAS instrument

(dark-blue color corresponds to high intensity, white

to the background level). Open circles show fitted po-

sitions of the peak, resulting from Gaussian fits. Red

squares show fits of additional TAS data, taken with

tighter collimation to improve the resolution (the corre-

sponding raw data are not shown). Orange star symbols

correspond to the spin-gap values at the local minimum

of the dispersion, extracted from the TOF data. Repro-

duced from Ref. [97].

The white circles on top of the colormap

are the positions of the gaussian peaks ob-

tained from the fit of the spectrum. After-

ward, we additionally measured intermedi-

ate fields around the 6 T with improved col-

limation. Corresponding peak positions are

shown with red triangles. Finally, we add

the values of the gap extracted from LET

data, shown by yellow stars.

From the TOF data we know that applica-

tion of 3 T field doubles the local minimum

of the dispersion and shifts it from the (H 0 0)

direction [see Fig.3.16 (b)]. As we do not

have the full coverage of the reciprocal space

at the intermediate field values between 0

and 3 T, we assume the splitting happens

already after the application of an infinites-

imal field. The TAS data reflect this show-

ing the changes in the spectrum already at

0.5 T. Consequently, between 0 and 6 T, the

TAS data do not track the local minimum

but rather the mode, where the two split

branches merge. As long as the field pushes the minima further away, the merge point

appears at higher energy, which is what we observe. Although at 0 T and at fields ≥ 6 T,

where the minima are unified, the data display the behavior of the gap itself.

The results of the TAS experiment confirm nontrivial field evolution of the magnon

spectrum. As we can see, the system is very sensitive to the magnetic field: thus, the

application of a small field shifts the spectral weight higher in energy. After 1.5 T the signal

becomes substantially weaker, and it is almost gone at 3 T. Approaching 6 T, the signal

reappears again although with the reverse tendency: the spectral weight goes down, and at

6.25 T the gap is closing. Further increasing field reopens the gap, with subsequent linear

growth.
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3.4.4 Summary

We investigated the evolution of the magnetic dispersion of ZnCr2Se4 in a magnetic field

applied along the [0 0 1] direction. After the domain-selection procedure, the zero-field

low-energy spectrum is determined by the gapless Goldstone modes stemming from the

positions of the selected magnetic Bragg-peaks and gapped pseudo-Goldstone modes, which

appear at the positions of the suppressed magnetic peaks. Application of a small magnetic

field splits each pseudo-Goldstone mode in momentum, making two local minima out of a

single one, and shifts them symmetrically from the initial position along the field direction.

The new modes have roughly the same gap value, although the minimum is much less

pronounced. Being initially proportional to the field, the distance between the split minima

saturates at around 4 T, and then decreases. At around 6 T the peaks unite again. Together

with the unification, the gap of the modes also decreases and closes completely at 6.25 T.

Further increasing the field immediately reopens the gap, and henceforth the gap grows

linearly with the field.

When the field approaches 6.25 T, the neutron spectrum becomes symmetric in the

(H 0 L) plane, thereby the true- and the pseudo-Goldstone modes are not distinguishable

anymore. The specialty of the critical state of the system is that it is characterized by the

gapless magnetic excitations which have parabolic-like dispersions, that is more typical for

FM-excitations, and usually does not appear at incommensurate positions [see Fig.3.16 (c)].

3.5 Anisotropy of macroscopic properties

3.5.1 Macroscopic properties and magnetism

In the previous sections, we saw that the behavior of the highly anisotropic magnon spectrum,

and in particular the pseudo-Goldstone modes, in ZnCr2Se4 has an extremely non-monotonic

field dependence. In this section, we briefly consider the effect of the magnetic structure

and perturbations on the low-temperature macroscopic properties of the sample.

Previous neutron diffraction studies have revealed a correlation between structural and

magnetic phase transitions in ZnCr2Se4 [70]. The authors argue that the structural phase

transition from a cubic to orthorhombic symmetry at TC is associated with the cooperative

displacement of Se2− ions. According to various estimates, this distortion at the lowest mea-

sured temperature does not exceed 0.06%–0.08% [68,72,73,75]. In the high-temperature

cubic phase, Cr3+ ion has no orbital angular momentum, which rejects the Jahn-Teller effect

as a possible cause of this displacement. Thus, the structural phase transition should be
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associated with an antiferromagnetic transition from the paramagnetic to the helicoidal

phase. However, this scenario requires the presence of a spin-orbit interaction, which is not

expected in the paramagnetic phase, again, due to the zero orbital angular momentum of

Cr3+ ion. A possible mechanism for the appearance of a finite orbital moment at the Cr site

was proposed based on recent measurements of nuclear magnetic resonance (NMR) [78].

The authors attribute this to a partial transfer of the magnetic moment to the neighboring

selenium sites.

3.5.2 Ultrasound measurements

To quantify the lattice anisotropy below the magnetic transition we utilize the ultrasound

measurements along and perpendicular to the magnetic propagation vector qh.

For these measurements, we polished two opposite {0 0 1} surfaces of a single crystal.

Piezoelectric transducers were glued to the polished surfaces to induce and detect ultrasound

vibrations with the generation frequency of 100 MHz and longitudinal polarization. In this

configuration, both the wave-vector of the generated sound kS, and its polarization were

parallel to the [0 0 1] cubic axis of the crystal. We chose the mode with the longitudinal

polarization of the sound vibrations because, in comparison with the transverse one, it

showed robustness against reinstallation of the transducers, as well as decent signal quality.

During the experiment we measured two orientations: the first one allows us to apply the

field along [0 0 1] axis, whereas in the second one the field direction was [1 0 0]. To measure

sound velocity along the spin-spiral we mounted the ZnCr2Se4 sample with its [0 0 1] axis

pointing vertically, along the magnetic field direction, which results in the selection of the

domain with the (00qh) ordering vector. To change between the orientations we took the

sample from the cryomagnet, reoriented it relative to the sample-stick, and inserted it back

into the magnet. Each measurement consists of the following steps. Prepare a single-domain

state by cooling down the sample in the field of 4 T to the base temperature of 2 K. Do the

measurements of the sound velocity upon increasing the temperature up to 30 K. During this

measurement, we cross the transition temperature TN and destroy the single-domain state.

When we reach 30 K we reverse the temperature change and proceed with measurements

upon cooling. At this stage we start with a multi-domain state and, as far as we do not

apply an external magnetic field, the domain selection does not occur, and we measure in a

multi-domain state down to the base temperature. The same steps were done for the second

orientation in which the ultrasound velocity was measured perpendicular to the spin-spiral

propagation vector.
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Figure 3.19: (a) The change in the sound velocity of the longitudinal acoustic mode, ∆v = v − v0, normalized

to the value v0 at 30 K, in the single-domain (SD, solid lines) and multidomain (MD, dashed lines) states.

The top and bottom curves correspond to the ultrasound wave vector kS perpendicular and parallel to the

propagation vector of the spin helix, qh, respectively. The inset shows a similar temperature dependence,

measured in the field-polarized FM phase at B = 7 T for kS ⊥ B (top curve) and kS ‖ B (bottom curve), for

comparison. (b) Magnetic-field dependence of the relative change in the sound velocity, ∆v/v0, normalized to

the respective v0 values at 12 T. The measurements are done at a constant temperature with the ultrasound

wave vector parallel and perpendicular to the magnetic-field direction. Note the tenfold difference in the

ranges of the vertical scales between (a) and (b). Reproduced from Ref. [97].

The ultrasound data in Fig. 3.19 (a) show relative changes in the sound velocity, ∆v/v0,

for the longitudinal wave propagating along the [001] ‖ qh and [100] ⊥ qh directions,

normalized to the respective values in the paramagnetic state at T = 30 K. It is clear that the

crystal is slightly stiffer in the direction orthogonal to the ordering vector of the spin helix,

but the effect is relatively small, on the order of 0.2%. This suggests that the difference

in phonon energies and phononic densities of states along the two directions must also

be similarly small. For comparison, the inset to Fig. 3.19 (a) shows a similar temperature

dependence, measured in the field-polarized FM phase at B = 7 T in the directions parallel

and orthogonal to the field-induced magnetization. The two curves have been normalized

to the respective v0 values at T = 30 K, where the sample remains cubic according to

the paramagnetostriction [97]. The observed change in ∆v/v0 between 30 K and base

temperature differs by only 2 · 10−4 for the two directions of the ultrasound wave vector,

which is within the reproducibility margin of our measurements.

The magnetic-field dependence of the relative change in the sound velocity, ∆v/v0,

measured for the same two directions at T = 2 K and normalized to the high-field value at

12 T, is plotted in Fig. 3.19 (b). One can see a very pronounced softening of the longitudinal

acoustic mode immediately below the critical field, which is much stronger for the acoustic
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waves propagating along the magnetic-field direction than perpendicular to it. The maximal

value of |∆v/v0| reaches 2%, which is ten times larger than the corresponding changes at

zero field and almost two orders of magnitude larger than the spontaneous magnetostric-

tion, suggesting that magnetic interactions exert a much stronger relative effect on the

dynamic than static properties of the lattice. The second anomaly that appears in both

field-dependence curves around 10 T represents the previously reported high-field transition

that was previously associated either with a spin-nematic phase [74] or with a crossover

from the quantum-critical region to the fully field-polarized FM phase [77]. The new phase

diagram suggested by Gu et al. [77] implies a very strong temperature dependence of this

high-field anomaly, so that it merges with Bc in the zero-temperature limit. In contrast, we

can see essentially no difference between the 1.5 and 2 K curves in Fig. 3.19 (b), indicating

that the crossover to the field-polarized FM phase stays at approximately 10 T at both

temperatures, which is hard to reconcile with the newly proposed phase diagram.

3.5.3 Dilatometric properties

To directly measure the structural deformations in the sample as a function of temperature

and applied magnetic field, my colleagues from TU Dresden performed accurate measure-

ments using capacitive dilatometry [97]. This method, having a sensitivity to relative changes

in the length of the order of 10−7 [104], makes it possible to measure changes in the lattice

constants with an accuracy unattainable for conventional diffraction methods.

For the measurements, we used the same polished ZnCr2Se4 single crystal as for ultra-

sound measurements. Measurements of the relative change in length ∆l/l0 were carried

out along one of the 〈001〉 cubic axes of the crystal. Depending on the direction of magnetic

field (transverse or longitudinal with respect to the chosen axis), it corresponds to either

a or c axis, respectively, in the tetragonally distorted structure with a = b 6= c. In what

follows, we will refer to the two measurement geometries as longitudinal (measurements

along the c ‖ B direction) and transverse (measurements along the a ⊥ B direction). All

measurements are presented relative to the l0 value, corresponding to the high-temperature

cubic structure at B = 0 and T = 30 K.

Figure 3.20 (a) shows the temperature dependences of the relative longitudinal and trans-

verse deformation of the sample ∆l/l0 measured in magnetic fields of 1, 3, 5, and 7 T. Each

measurement was carried out after preliminary cooling of the sample in a field of 7 T. Follow-

ing the phase diagram in Fig. 3.3 (a), all measurements correspond to a single-domain state.
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Figure 3.20: (a) Thermal-expansion measurements in

longitudinal and transverse magnetic fields above the

domain-selection transition. All curves are normalized

to the same l0 value at T = 30 K and B = 0. (b) Zero-

field thermal expansion, measured during zero-field

cooling (ZFC) and after field-cooling in a longitudinal

(“FC 0 T ‖”) or transverse (“FC 0 T ⊥”) field of 7 T.

The measurement steps (i), (ii), (iii) are explained in

the text. (c, d) Magnetostriction measurements at sev-

eral constant temperatures for longitudinal and trans-

verse field directions, respectively. Reproduced from

Ref. [97].

In the paramagnetic (T > TC) and field-

polarized FM (B > BC) states, the longitu-

dinal and transverse curves coincide, which

indicates isotropic thermal expansion. In the

helimagnetic state, the application of an ex-

ternal magnetic field below the critical one

leads to a partial polarization of the helix,

that is, to the so-called conical spiral. In this

case, the deformation of the sample is due to

the superposition of two effects — isotropic

thermal expansion in the field-polarized FM

state and anisotropic spontaneous magne-

tostriction in the helimagnetic state. The

latter effect leads to a splitting of the ther-

mal expansion curves. By extrapolating the

data to the zero-field and zero-temperature

limit, we obtained an estimate of the tetrag-

onal distortion with (a − c)/a ≈ 3.6 · 10−4,

which is even less than that obtained ear-

lier [68,72,73,75].

To measure the deformation of the sam-

ple due to exclusively spontaneous magne-

tostriction arising from the spiral arrange-

ment of the spins without the contribution caused by the external magnetic field, the sample

was brought into a single-domain state by cooling down in a magnetic field of 7 T. When

the base temperature of 2 K was reached, the field was ramped down to zero and the

temperature dependence of the longitudinal and transverse deformation of the sample was

measured. These data, together with the reference curve corresponding to the multi-domain

state, are shown in Fig. 3.20 (b). It is immediately evident that the behavior of the curves is

fundamentally different from those in Fig. 3.20 (a). One could expect that the single-domain

state survives up to TC, which would result in the order-parameter-like change in both lattice

parameters shown with dashed lines, similar to that observed in finite fields [Fig. 3.20 (a)].

However, measured thermal-expansion curves (labeled “FC 0 T ‖” and “FC 0 T ⊥”) deviate

from this behavior at temperatures above 5 K, as they both converge to the ZFC reference

measurement. This behavior of the thermal expansion curves is associated with relaxation
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back to the multidomain state at elevated temperatures on a measurement time scale that

was carried out with a temperature sweep rate of 0.1 K/min. The slow magnetic relaxation

to the multi-domain state is also revealed in the measurements of magnetostriction at several

constant temperatures, which are presented in Figs. 3.20 (c, d) for the longitudinal and

transverse field geometries, respectively.

3.5.4 Slow relaxation of helimagnetic domains

Figure 3.21: Time dependence of the relative change

in the sample length ∆l/l0, measured during and after

a rapid linear sweep of magnetic field from 7 T to zero

in the transverse and longitudinal directions. The time

dependence of magnetic field is plotted at the bottom.

At t < 0, the sample temperature is stabilized at T = 8

or 12 K, and a downward field sweep with 1 T/min

starts. After the time t0 = 420 s, when the field reaches

zero, slow relaxation towards the multidomain state

can be described by a stretched exponential, Eq. (3.10),

with β = 0.5 and the average decay constants τ8 K =

980 s and τ12 K = 190 s (thin white lines). Reproduced

from Ref. [97].

Having observed slow magnetic domain re-

laxation in magnetostriction measurements,

we proceed with estimating the functional

dependence and characteristic times of such

relaxation by following the time-dependent

changes in the sample length at a constant

temperature. After applying a 7 T field to the

sample in either longitudinal or transverse

direction and stabilizing the temperature at

T = 8 or 12 K, we swept the field down to

zero with the maximal rate of 1 T/min and

followed the time-dependent change in the

relative sample length, ∆l/l0, both during

and after the field sweep. The results are

plotted in Fig. 3.21, where the bottom panel

shows the time dependence of the external

field. During the downward field sweep,

anomalies in ∆l/l0 are observed at the crit-

ical field (4.8 or 4.1 T, respectively) and at

the domain-selection field (0.8 T). As soon

as the magnetic field is reduced below the

domain-selection field, slow relaxation towards the multidomain state is observed both in

the transverse and longitudinal directions. The relaxation curves cannot be described by

a simple exponential function, which implies contributions from processes with a broad

spectrum of different relaxation times. Defining the time when magnetic field reaches zero

as t0, we can describe the relaxation at times t > t0 using the stretched exponential function,

f (t) = A + B exp

�

−
� t − t0
τ

�β
�

, (3.10)
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with β = 0.5, where τ is the temperature-dependent decay constant. This model is equivalent

to a continuous weighted sum of simple exponential decays with a distribution of relaxation

times described by the probability density

ρ(θ) =
1

2
p
π
θ−1/2 exp(−θ/4). (3.11)

Relaxation with a stretched-exponential behavior is typical for systems with randomly

distributed magnetic domains and is commonly associated with magnetic domain-wall

motion. Here it results in the destruction of the single-domain state on the time scale

of several minutes or hours (depending on the temperature) with a tendency to restore

the cubic symmetry of the sample on the macroscopic scale. At a lower temperature of

8 K, the average relaxation rate is approximately 5 times slower than at 12 K. Apart from

that, the two datasets also show a qualitative difference. At the higher temperature of

12 K, both transverse and longitudinal curves relax to the same asymptotic value of ∆l/l0
at t →∞, suggesting that an isotropic multidomain state is fully restored as a result of

such relaxation. In contrast, the 8 K datasets relax to different asymptotic values in the

transverse and longitudinal directions, which implies that some partial anisotropy in the

distribution of magnetic domains survives arbitrarily long after the external field is turned

off. A crossover between these two distinct behaviors must therefore take place at some

intermediate temperature between 8 and 12 K.

Because every domain wall in a helimagnet costs additional energy, relaxation through

nucleation of additional misaligned domains is only possible if some excess energy is already

present in the initial state of the system. Indeed, by applying magnetic field to the sample,

we only select magnetic domains with a single direction of the magnetic ordering vector, but

such domains can still possess different chiralities. One therefore expects that domain walls

separating right- and left-handed helical domains are still present in the initial state, carrying

excess energy that can be redistributed via nucleation of new magnetic domains with a

misaligned orientation of the magnetic ordering vector as a result of relaxation processes

facilitated by thermal fluctuation. In other words, a domain wall separating helimagnetic

domains with opposite chirality can decay into a larger number of domain walls between

domains with orthogonal ordering vectors and either equal or opposite chiralities. It is

natural to expect that such processes are governed by the corresponding domain-wall

energies that must be different for all three types of domain walls and could be estimated

from micromagnetic simulations.
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3.5.5 Thermal properties

The anisotropy and nonmonotonic field dependence of the magnon spectrum of ZnCr2Se4
manifest themselves in the low-temperature macroscopic thermodynamic properties of the

sample. Recently published measurements of the specific heat in ZnCr2Se4 [77] have shown

behavior that can be regarded as a macroscopic manifestation of the pseudo-Goldstone gap

that we see in our inelastic-scattering data [97]. Low-temperature specific heat data in zero

field have a pronounced anomaly at temperatures of the order of 0.1–0.3 K. Fitting the

specific heat data below 3 K to the exponential function Aexp(−∆PG/kBT) gives the value of

the energy gap ∆PG = 0.186 meV, which is in perfect agreement with the pseudo-Goldstone

magnon gap energy obtained in our INS measurements. Note that the actual spin gap

in the system (at the ordering wave vector) is expected to be below this value [40, 68],

but because the true Goldstone mode carries only 1/3 of the magnon spectral weight,

thermodynamic properties are more sensitive to the pseudo-Goldstone magnon gap. With

increasing magnetic field, this anomaly gradually smoothes out and completely disappears

at a critical field value of 6.5 T, reappearing again in the 10 T data. This behavior repeats the

evolution of the pseudo-Goldstone gap, which closes in a field of about 6.2 T and reopens in

the field-polarized ferromagnetic state.

Similar anomalies that resemble the nonmonotonic behavior of the spin gap were also

observed in the low-temperature thermal conductivity of ZnCr2Se4 as a function of magnetic

field and temperature [77]. The zero-field thermal conductivity, κ(T), shows a change in

behavior around 1 K, which disappears at the critical magnetic field. The corresponding field

dependence, κ(B), exhibits a nonmonotonic behavior at temperatures below 1 K, with two

clear anomalies at the domain-selection field and at the transition to the field-polarized FM

phase. In the thermal conductivity experiment from Ref. [77], the magnetic field was applied

along one of the 〈111〉 crystallographic axes, while the thermal current was measured in an

orthogonal direction [105]. In this geometry, the angle formed by the propagation vectors

of all three magnetic domains with the magnetic field is approximately the same, hence the

distribution of magnetic domains cannot be well controlled (it would be determined only by

small unavoidable misalignments of the field direction). It is therefore unclear whether the

thermal conductivity was measured in a single- or multidomain state, and how the thermal

current was oriented with respect to the magnetic propagation vector.

The process of heat transfer in a magnetic insulator is due to two mechanisms — lattice

thermal conductivity and thermal spin transport. The latter, in the case of a system of

localized spins, is the transfer of heat by magnetic oscillations in the system — magnons.
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If we consider magnons as essentially an ideal gas, and the phonon and magnon heat-

conducting channels — as independent, then the total thermal conductivity is the sum

of the contributions of each: κ = κL + κm. The results of ultrasound and dilatometric

measurements presented in previous sections showed that in the magnetically ordered state

of ZnCr2Se4, deviations from cubic symmetry of both structural parameters and frequencies

of acoustic phonons do not exceed 0.1%. This makes it possible to separate the magnon

contribution to the thermal conductivity from the lattice contribution by considering the

difference in thermal conductivities in directions parallel (κ‖) and perpendicular (κ⊥) to

the magnetic ordering vector qh. Thus the difference, ∆κ= κ⊥ − κ‖, should be determined

exclusively by magnetic effects, which can include magnon heat conduction and anisotropic

phonon scattering on magnons and magnetic domain walls [97].

Due to the obvious anisotropy and non-monotonic behavior of the magnon spectrum,

as well as the obvious connection with the thermodynamic properties [77], we decided to

investigate the directional dependence of the low-temperature thermal conductivity. Our

collaborators from the University of Miami conducted an outstanding experiment in which

the anisotropic thermal conductivity in the single-domain state of ZnCr2Se4 was measured

with high accuracy in directions parallel and orthogonal to the magnetic ordering vector in

magnetic fields up to 5 T and down to T≈ 0.6 K [97].

The measured temperature and field dependences are shown in Fig. 3.22. Measurements

in zero magnetic field, shown in Fig. 3.22 (a), did not reveal anisotropy between κ⊥/T and

κ‖/T , however, when the field is applied, there is a clear discrepancy between the curves at

temperatures below 2 K. The thermal conductivity in the direction of propagation of the

magnetic helix is greater than in the transverse direction. This difference becomes even

more obvious when we consider the relative differences ∆κ/κ≡ (κ⊥ − κ‖)/κ‖ presented in

Fig. 3.22 (b). It can be seen that∆κ/κ reaches values several orders of magnitude higher than

the tetragonal distortion of the crystal lattice and by several hundred times the anisotropy in

the sound velocity. It could be assumed that a certain phase transition occurs in the system,

leading to a decrease in symmetry and, as a consequence, to the appearance of anisotropy.

However, neither dilatometry nor ultrasound velocity measurements contains anomalies

around this temperature, excluding the possibility of such a transition. Another argument in

favor of the hypothesis of the magnetic nature of the anisotropy in thermal conductivity is

that the temperature 2 K in energy units coincides with the value of the pseudo-Goldstone

energy gap. The low-temperature dependence of κ‖ and κ⊥ on the magnetic field shown in

Fig. 3.22 (c), as in the previous experiment, behaves non-monotonically and resembles the

field dependence of the energy gap. All curves clearly show a wide peak with a maximum
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Figure 3.22: Anisotropy of the thermal conductivity with respect to the direction of the magnetic ordering

vector. (a) Temperature dependence of κ⊥/T (◦) and κ‖/T (•) at B = 0 and 5 T (main panel) and at two

intermediate fields of 1.5 and 3 T (inset). The dotted line in the inset shows the 3 T dataset reproduced

from Ref. [77], which we recalculated into κ(T)/T and normalized by a constant factor to match with

our data in the high-temperature region. (b) Temperature dependence of the relative thermal-conductivity

anisotropy, (κ⊥−κ‖)/κ‖, at different magnetic fields. The inset shows the low-T part of the same data without

normalization, i.e. κ⊥− κ‖, on a linear temperature scale. (c) Magnetic-field dependence of κ⊥ (◦) and

κ‖ (•) for three different temperatures. (d) Magnetic-field dependence of the thermal-conductivity anisotropy,

κ⊥− κ‖, resulting from the pairwise subtraction of the data in panel (c). Reproduced from Ref. [97].

at B ≈ 2−2.5 T. Fig. 3.22 (d) shows the differences ∆κ= κ⊥(B)− κ‖(B) for each temper-

ature. Several points are worth noting here. First, ∆κ changes sign around 1.5 T for all

temperatures. We also see again that the curves flatten to zero as they approach the critical

field of the order of 6 T. All curves have a maximum in the vicinity of 3 T, which again

prompts thoughts about the behavior of the gap in the magnon spectrum. Comparison
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of the curves in Figs. 3.22 (a, c, and d) leads us to the conclusion that the maxima in the

field dependences correspond to low-temperature upturns in the κ(T)/T temperature de-

pendences. This is especially evident in 1.5 and 3 T datasets in the inset to Fig. 3.22 (a).

Comparison with data published by Gu et al. [77], which were measured down to slightly

lower temperatures, shows that κ(T)/T has another peak with a maximum at approximately

0.4 K. This maximum is most pronounced in the transverse thermal conductivity, ∇T⊥ B,

and only in the intermediate field range around Bc/2, which enhances κ⊥(0.5 K) at least

sixfold (according to Ref. [77]) compared to its zero-field value. In higher magnetic fields

above the field-induced critical point, the monotonic behavior of κ(T)/T is restored [77].

Attempts to estimate the magnetic contribution to the specific heat based on inelastic

neutron scattering data have revealed a significant agreement between the calculated and

measured values. It is worth noting here that the analytical expression for the magnon

dispersion obtained from the neutron data is rather an estimate and does not claim to be

accurate. However, despite the inspiring similarity with the measured values, the calculated

κm does not reproduce several experimental results. First, this is the absence of anisotropy

in zero magnetic field, and secondly, the appearance of anisotropy in the experiment only

below T ∼ 2 K. The authors discuss magnetic disorder and chiral domain boundaries as

possible mechanisms explaining these effects [97].
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Chapter 4

Sr3Fe2O7

4.1 Introduction

In a crystal with high lattice symmetry, an antiferromagnetic (AFM) or spin-spiral state often

selects its ordering vector spontaneously among several structurally equivalent alternatives.

For instance, a stripe-AFM state in iron pnictides can form with the (π, 0) or (0,π) wave

vector, whereas the helimagnetic state in the cubic spinel ZnCr2Se4 forms in 3 equivalent

domains characterized by the ordering vectors (qh 0 0), (0 qh 0), and (0 0 qh). A single-domain

state can be stabilized by cooling the system in a magnetic field or under uniaxial pressure.

The condensation of paramagnetic excitations into spin waves upon crossing the ordering

temperature in the vicinity of the ordering wave vector is well understood. However, what

happens at the structurally equivalent wave vectors is less clear. For instance, a recent

study performed on iron-pnictide superconductors in the single-domain (detwinned) state

indicates that the second wave vector possesses no spin wave up to at least 40 meV [106].

On the other hand, our experiments on the S = 3/2 helimagnet ZnCr2Se4 show a clear soft

mode at the (qh 0 0) and (0 qh 0) wave vectors in the single-domain state formed by cooling

in a magnetic field applied along the z axis (see. Chapter 3). This soft spin-wave branch

appears gapless within the linear spin-wave theory (LSWT) but develops a small energy

gap of ∼ 0.17 meV due to nonlinear corrections arising from quantum fluctuations. This

offers a possibility to estimate the weak effects related to spin-wave scattering processes

and to compare them with the theory on a quantitative level. However, the complex unit

cell of the pyrochlore sublattice formed by the S = 3/2 magnetic Cr3+ ions in the spinel

structure leads to multiple spin-wave modes that complicate the theoretical calculations. It

is therefore important to repeat the same experiment on a helimagnetic compound with a

simpler tetragonal structure, with only one magnetic atom per unit cell.
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FeO6

Sr

Figure 4.1: Sr3Fe2O7 crystal structure.

Solid lines illustrate a crystallographic

unit cell. The structure is plotted using

VESTA software [107] based on refine-

ments in Ref. [108].

The layered iron oxide Sr3Fe2O7 with TN ≈ 115 K [109]

represents the perfect material to study pseudo-Goldstone

modes for several reasons. According to our present un-

derstanding, the pseudo-Goldstone magnon gap is formed

due to the influence of quantum fluctuations. Hence, it

should depend on the spin state of the magnetic ion. In a

S = 1/2 system, the quantum fluctuations are too strong

and can destroy the soft mode, whereas, in the classical

limit, only a small energy gap opens on top of the gap-

less dispersion predicted by LSWT. The S = 5/2 magnetic

moments of Sr3Fe2O7 can be considered as classical, and

one can therefore expect well-developed soft modes with

a small spin gap. Second, the structure of Sr3Fe2O7 is

simple tetragonal, with only one magnetic ion per unit

cell, which simplifies spin-dynamical calculations in con-

trast to the pyrochlore-sublattice of ZnCr2Se4. And finally,

the tetragonal structure results in only two possible wave

vectors for the incommensurate spin spiral, (ξξ1) and

(ξ ξ̄1) with ξ= 0.141 (see. Fig. 4.1), as opposed to three

in the cubic structure. The propagation vector of the spin spiral is sufficiently long to be

resolved in the spectrum [87]. An additional benefit is that the spin-wave spectrum and

exchange interactions in Sr3Fe2O7 are well known from previous experiments (performed

in the multi-domain state).

4.2 Crystal and magnetic structure of Sr3Fe2O7

Sr3Fe2O7 is a stoichiometric compound belonging to the Ruddlesden-Popper series with

general formula An+1MnO3n+1, where M is a transition metal. The crystal structure of these

compounds consists of 2D perovskite-like layers separated with cations. The number n

corresponds to the number of octahedra layers in a perovskite-like slab. These materials

attract the attention of researchers due to a wide variety of properties, ranging from su-

perconductivity [110] and electronic nematicity [111] in generally metallic ruthenates to

various orbital and magnetic phase transitions in low-temperature insulating manganites.

The bilayer perovskite Sr3Fe2O7 crystallizes in a tetragonal structure with 2 formula

units per unit cell (space group I4/mmm, lattice parameters a = b = 3.846(4) Å and
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a) b)

Figure 4.2: Schematic of the helical magnetic structure of Sr3Fe2O7. (a) Projection on the ab-plane. All spins

are perpendicular to the [1 1 0] direction. (b) Side view on a few layers of spins demonstrating a formation

of the kz = 1 propagation vector in the c direction. Black solid lines represent the tetragonal unit cell. The

structure is plotted using VESTA software [107].

c = 20.234(2) Å (at T = 390K) [87]). This structure is visualised in Fig. 4.1. The magnetic

sublattice is formed by Fe4+ ions in the 3d4 electron configuration with classical spins

S = 5/2.

Sr3Fe2O7 is a helimagnetic material with an incommensurate spin-spiral order below

the AFM transition temperature TN = 115 K. The helical magnetic ground state with the

spin modulation vector k = [0.141 0.141 1] was determined by means of neutron powder

and single-crystal diffraction [87]. The reported magnetic structure is an elliptical helix

with µc = 3.19(5)µB component of the magnetic moment smaller than its µa,b = 3.58(11)µB

components (the corresponding powder diffraction data are µc = 3.04(5)µB and µa,b =

3.53(4)µB). The schematic drawing of the Sr3Fe2O7 magnetic structure is shown in Fig. 4.2.

Panel Fig. 4.2(a) shows the view along the c axis. It is seen that all spins are perpendicular

to the [1 1 0] crystallographic direction. Spins of the iron ions having the same a and b

coordinates are co-aligned. The c component of the propagation vector kz = 1 is ensured

by the fact that the spins at (1 0 ± z) are antiparallel to those at (0.5 0.5 0.5 ± z) [see

Fig. 4.2(b)].

4.3 Inelastic neutron-scattering investigation

Following from the symmetry there are two possible magnetic domains with helixes pointing

along (ξξ0) and (ξξ̄0) structurally equivalent directions. The idea of the experiment was
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to choose the single magnetic domain by cooling down the sample in a magnetic field and

investigate the low-energy magnetic excitations in this material. The main interest was to

measure the low-energy dispersion and determine the spin gap of the pseudo-Goldstone

modes.

Figure 4.3: Sr3Fe2O7 single crystal

on the aluminum holder.

The single crystal of Sr3Fe2O7 has been grown and char-

acterized by our colleague Darren Peets by the same method

as the one used in an earlier study [87, 109]. It is a large

fully oxygenated single-grain crystal with a mass of 0.5 gram,

which we characterized by x-ray Laue backscattering and

magnetization. The field-cooled and zero-field-cooled mag-

netization data are shown in Fig. 4.4.

Because of the large spin, this sample mass is perfectly

sufficient for a TOF measurement. Our main question was

whether the 2.5 T field available on IN5 is sufficient to reach

the single-domain state by field-cooling. In Fig. 4.4 the field-cooled and zero-field-cooled

magnetization curves for the field direction B ‖ (1 1 0) are shown. One can see that a field of

0.2 T should be already sufficient to select a single helical magnetic domain.

Figure 4.4: Field-cooled (FC) and zero-field-

cooled (ZFC) magnetization data.

Inelastic neutron scattering experiment [112]

on a single crystal was carried out on direct-

geometry time-of-flight (TOF) cold neutron spec-

trometer IN5 at the ILL (Grenoble). The sample

on the aluminum holder (Fig. 4.3) was aligned in

the (HH L) scattering plane. It was mounted in

the 2.5 T cryomagnet with its (1 1̄ 0) axis point-

ing vertically along the field direction. In this

configuration, field cooling had to result in the

selection of the (ξξ̄1) magnetic domain, whereas

the (ξξ1) domain had to be suppressed. The sample is air-sensitive so all alignment was

performed in the helium atmosphere. We performed a rocking scan for incoming neutron

wavelengths of 3.15 and 4.8 Å, which correspond to the energy resolution of 0.36 and 0.1

meV, respectively, defined as the full width at half maximum of the incoherent elastic line.

The measurements were done at the base temperature of 1.8 K.

The sample was cooled down in the magnetic field of 2.5 T. After reaching the base

temperature, the magnetic field was switched off, and data was collected. In this scattering

geometry, only the propagation vectors of the suppressed domains lie within the horizontal
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Figure 4.5: Elastic cut through the (H +

K , H − K , L) plane containing both se-

lected and suppressed Bragg peaks. The

data were measured at the base tempera-

ture of 1.8 K with incident neutron wave-

length of 4.8 Å. The data integrated within

±0.05 meV energy range and out-of-plane

momentum integration range was set to

±0.04 r. l. u.

scattering plane. Fortunately, they are short enough to

be covered within the out-of-plane range available with

the position-sensitive TOF detector bank, despite the

vertical limits of the cryomagnet opening angle. The

appropriate reciprocal space coverage and intensity of

a signal were found in the vicinity of (0 0 5) structural

Bragg peak. This Bragg reflection is forbidden by the

structure factor, so the intensity from it does not affect

the magnetic signal. Here both wave vectors, corre-

sponding to the selected and suppressed magnetic do-

mains, are reachable in momentum and have sufficient

energy coverage. Therefore, further investigation was

focused around the point (0 0 5) in reciprocal space. To

denote points in the Q space, we will use reciprocal lat-

tice elements corresponding to a simple tetragonal unit

cell (1 r. l. u.a = 1 r. l. u.b = 2π/a, 1 r. l. u.c = 2π/c).

In the multi-domain state, if the sample were cooled in zero magnetic field, there would

be two equivalent pairs of magnetic reflections (∓0.141, ∓0.141, 5) and (∓0.141, ±0.141, 5)

of equal intensity. To prepare a single-domain state with only one direction of the spin

helix, we cooled down the sample in a magnetic field B ‖ (1 1̄ 0). As a result, we expected

the suppression of the signal intensity at the positions of the (∓0.141, ∓0.141, 5) magnetic

Bragg reflections corresponding to the suppressed domain. The magnetic Bragg peaks at

the (∓0.141, ±0.141, 5) positions should stay well resolvable and intense because the field

was parallel to the (1 1̄ 0) direction making the formation of the correspondent domain

preferable.

To confirm the domain selection we made the constant-energy cut through the (H +

K , H−K , 5) plane (Fig. 4.5) to compare the magnetic Bragg intensities at the two orthogonal

wave vectors. It is clearly seen that the intensity of the (∓0.141, ∓0.141, 5) Bragg peaks

is indeed lower than for the (∓0.141, ±0.141, 5) reflections. However, they are just three

times smaller compared to the selected peaks. It indicates that 2.5 T field is not enough

for the complete domain selection in this sample. Nevertheless, we performed a series of

measurements in this “partially domain-selected state” as well as in the multi-domain state

as a reference.

The overview measurements were done with the incoming neutron wavelength of 3.15 Å.

The state was prepared by cooling down the sample in a magnetic field of 2.5 T. We visualize
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Figure 4.6: Energy-momentum cuts through the selected (a, b, c) and partially suppressed (d, e, f) Bragg

peaks. (a, d) Cuts along the direction connecting two magnetic Bragg peak positions. (b) (H H 0) cut through

the selected magnetic Bragg peak. (d) (H H̄ 0) cut through the partially suppressed magnetic Bragg peak. (c, f)

(0 0 L) cuts through the selected and partially suppressed magnetic Bragg peaks. All the presented data were

measured at the base temperature of 1.8 K with incident neutron wavelengths of 3.15 Å. The measurements

are done with B = 0 T after cooling down in the magnetic field B = 2.5 T || (1 1̄ 0). The momentum integration

ranges in directions orthogonal to the image are indicated above each panel.

the obtained results by presenting 2D cuts through the 4D data sets. The top and bottom

panels in Fig. 4.6 show the cuts through the positions of the selected and suppressed Bragg

peaks respectively. The top and bottom panels in each column can be compared in terms

of the form of dispersion and signal intensity — the color scales for these pairs are the

same and are indicated on each panel. Figs. 4.6 (a, b, c) show cuts through the selected

magnetic Bragg peaks along several high-symmetry lines in Q space that are parallel to

the (1 1̄ 0), (1 1 0), and (0 0 1) directions. The bottom panels [Fig. 4.6 (d, e, f)] show the

equivalent cuts through the suppressed Bragg peaks along the lines parallel to the (1 1 0),

(1 1̄ 0), and (0 0 1) directions. In the (H H̄ 5) cut we clearly see intense magnon branches

emanating from incommensurate magnetic satellites (∓0.141, ±0.141, 5) of the (0 0 5) Bragg

peak. Similar branches originating from the (∓0.141, ∓0.141, 5) suppressed magnetic Bragg

peaks are noticeably weaker. This intensity distribution is consistent with the assumption

that the domain selection procedure was only partially successful and the resulting state

is a superposition of magnetic domains with helixes formed along the (1 1̄ 0) and (1 1 0)
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Figure 4.7: Detailed energy-momentum cuts along the directions connecting two selected (a, b, c) and two

suppressed (d, e, f) magnetic Bragg peaks. (a, d) B = 0 T cuts after domain selection, (b, e) B = 2.5 T cuts

after domain selection, (c, f) B = 0 T cuts in the multi-domain state. All the presented data were measured at

the base temperature of 1.8 K with incident neutron wavelengths of 4.8 Å. The momentum integration ranges

in directions orthogonal to the image are the same for all datasets and indicated above each panel. (a, b, d, e)

Measurements after cooling down the sample in the magnetic field B = 2.5 T || (1 1̄ 0), (c, f) measurements

after zero-field cooling.

directions. Since the fraction of domains with helixes along the magnetic field applied

during the cooling of the sample predominates, the intensity of the signal due to scattering

by these domains is higher.

The one characteristic energy scale revealed in Fig. 4.6 is given by the inflection point at

the top part of the M-shaped dispersion, located at ∼ 3 meV. The results are consistent with

the data measured in a multi-domain state [87].

To better resolve the low-energy details of the magnon dispersion we performed mea-

surements with 4.8 Å wavelength, providing a very high energy resolution of 0.1 meV.

The correspondent energy-momentum cuts are presented in Fig. 4.7. In addition to mea-

surements in zero magnetic field after the domain selection procedure [Fig. 4.7 (a, d)],

we also carried out identical measurements in a field of 2.5 T remaining in a partially

single-domain state [Fig. 4.7 (b, e)] and measurements in a multi-domain state [Fig. 4.7 (c,

f)]. In contrast to previous measurements [87], thanks to the high resolution of the IN5

spectrometer, we have found the anisotropy gap, which in this sample turned out to be of
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Figure 4.8: One-dimensional energy profiles of the in-

elastic neutron scattering signal at the positions of the

selected (triangles) and suppressed (circles) magnetic

Bragg peaks.

the order of 0.7 meV. The presence of the gap

is clearly visible on all panels in Fig. 4.7. De-

spite only partial suppression of domains in

one direction, we still had hope of detecting

the presence of pseudo-Goldstone modes in

the signal. In accordance with our observa-

tions on ZnCr2Se4 (Chapter 3), in a sample

with several possible equivalent directions of

formation of a spin spiral, when choosing a

unique direction of the spiral by suppressing

domains of other types, magnons are a set

of gapless branches arising from magnetic

Bragg peaks corresponding to the selected

helicoidal magnetic order and soft magnon modes at the positions of suppressed Bragg

peaks. In the case of Sr3Fe2O7, since there is an anisotropy gap, we do not observe gapless

modes, but we expect a difference in the size of the gap at the positions of the selected and

suppressed magnetic Bragg peaks. Since, as a result of the domain selection procedure, we

failed to completely suppress the spiral in one of the directions, the signal at each of the

points should be a combination of the Goldstone mode from one domain and the pseudo-

Goldstone mode due to the second domain with the orthogonal direction of the spin spiral.

To estimate the value of the anisotropy gap, as well as to try to distinguish the internal

structure of the dispersion, in Fig. 4.8 we plotted one-dimensional cuts of the data at the

suppressed and selected magnetic Bragg peaks. While these cuts give an estimate of the size

of the anisotropy gap in the system, no internal structure with two different gaps can be

distinguished.

4.4 Summary

Sr3Fe2O7 is a promising material for the study of pseudo-Goldstone magnons, recently

discovered in ZnCr2Se4 [40]. The latter is the result of physics beyond the linear spin-wave

theory and is currently explained by magnon-magnon interactions. To the best of our

knowledge, pseudo-Goldstone magnons have so far been discovered only in ZnCr2Se4 —

a cubic spinel compound with an incommensurate spin-spiral ground state. However, the

complex unit cell of the pyrochlore sublattice formed by the S = 3/2 magnetic Cr3+ ions

in the spinel structure leads to multiple spin-wave modes that complicate the theoretical
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calculations. It is therefore important to repeat the experiment on a helimagnetic compound

with a simpler structure. To observe this type of dispersion, one needs a material with several

equivalent directions of formation of a spin spiral. The material should have negligible

magnetocrystalline anisotropy and a classical spin, because in the case of spin 1/2, quantum

fluctuations can destroy the soft magnon mode. Also, the helical pitch must be short enough

to ensure the propagation vector of the spin spiral is sufficiently long to be clearly resolved

in the spectrum. Sr3Fe2O7 appeared as a good possibility to investigate pseudo-Goldstone

magnons on a simple tetragonal structure with only one magnetic ion per unit cell. The

magnetic sublattice of Sr3Fe2O7 is formed by the S = 5/2 magnetic moments and can be

considered as classical. There are only two possible directions for the incommensurate spin

spiral with a sufficiently long propagation vector to be clearly resolved in the spectrum.

The goal of the proposed experiment was to measure the pseudo-Goldstone magnon

dispersion and determine its spin gap with high-resolution TOF spectroscopy. The data

obtained on a simple-tetragonal layered compound with classical spins and one magnetic

atom per unit cell would enable a quantitative comparison with spin-dynamical calculations.

We performed a series of measurements on the cold neutron time-of-flight spectrometer

IN5 (ILL, Grenoble) and mapped out the low energy dispersion in Sr3Fe2O7 . The sample

was prepared by cooling down in a magnetic field of 2.5 T applied along the (1 1̄ 0) direction.

It leads to the partial domain selection and the final state was a superposition of the (ξ ξ̄1)

and (ξξ1) magnetic domains. Thereby, we conclude that the applied magnetic field is not

sufficient for the complete domain selection. Based on the analysis of the intensities of the

corresponding Bragg peaks, we found that the fraction of the selected (ξ ξ̄1) domains in the

final partially single-domain state was three times higher than the fraction of the suppressed

ones. The high-resolution measurements revealed the anisotropy gap in a system of the

order of 7 meV which was not resolved in previous neutron studies.

As a result of the partial suppression of one type of magnetic domains, the intensity of

the magnetic signal was also redistributed accordingly – we observe an intense signal near

the selected wave vectors and less intense branches of dispersion arising from the magnetic

satellites corresponding to the suppressed domains. Based on the experience of similar

measurements on ZnCr2Se4, for each of the magnetic domains, we expected to find two

types of excitation modes. The first type of excitations is characterized by dispersion having

a minimum on the wave vectors corresponding to the magnetic order in this particular

domain. In ZnCr2Se4, these excitations were found in the form of gapless dispersions, or

the so-called Goldstone modes. Since in the case of our system there is anisotropy, these

excitations will have a gap. The second type of excitations is pseudo-Goldstone modes —
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gapped soft modes having the minima at wave vectors corresponding to the propagation

vectors of the spin spirals in the equivalent magnetic domains. These excitations were also

found in ZnCr2Se4 and, in contrast to the gapless Goldstone modes, they had a spin gap of

0.17 meV. In the case of a sample with an anisotropy gap, it can be assumed that both types

of magnons will be gapped, but the gap sizes will be different. In the case of a partial choice

of domains, one can expect that two types of magnon dispersions from a superposition of

equivalent domains will manifest themselves in the form of an internal structure of the

inelastic neutron scattering signal on each of the ordering vectors. However, any attempts

to discern any internal structure in the measured data have not led to convincing results.

Obviously, the answer to the question of the presence of pseudo-Goldstone modes in

Sr3Fe2O7 requires further measurements in the single-domain state prepared using a higher

magnetic field. Our group has already made a proposal for such measurements, and we

plan to continue this study.
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Chapter 5

Iron monophosphide (FeP)

5.1 Introduction

5.1.1 Phosphides of transition metals

FeP belongs to a family of binary compounds with the general formula MX (where M is

a transition metal, X is a pnictogen). These compounds have the MnP-type structure and

many of them display noncollinear magnetism. One of the most attractive properties is

helimagnetism appearing in iron monophosphide and a few other members of the MX family

[113]. Another intriguing phenomenon is pressure-induced superconductivity discovered in

CrAs and MnP in the vicinity of the magnetically ordered state [114–116].

Figure 5.1: FeP crystal structure. The struc-

ture is plotted using VESTA software [107]

based on data in Ref. [117].

The orthorhombic FeP crystallizes in a complex

crystal structure with 4 formula units per unit cell

(space group Pnma) [117]. It consists of magnetic

Fe3+ and non-magnetic phosphorus P3− (Fig. 5.1)

that occupy the c positions of the Pnma space group.

The unit cell parameters are, at room temperature,

a = 5.17 Å, b = 3.09 Å, c = 5.77 Å [118].

Available resistivity data demonstrate metallic be-

havior [119, 120]. Susceptibility and specific heat

measurements on powder and single-crystalline sam-

ples [118–122] show an antiferromagnetic phase tran-

sition at about TN = 120 K. Other remarkable features

seen in susceptibility data are the high level of anisotropy at T > TN between different

crystallographic directions and a broad peak in all curves at about 220 K which indicates

the existence of short-range order well above the ordering temperature.
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The results of thermal expansion measurements, performed in the temperature range

95–300 K, show the behavior similar to other MnP-type compounds — the thermal expansion

coefficient of the b-axis is about six times higher than for other directions [120].

5.1.2 FeP magnetic structure

Figure 5.2: Schematic illus-

tration of the FeP helical spin

structure propagating along

the c axis as proposed by

Felcher et al. [123]. Iron mag-

netic moments located in one

ab plane are codirectional and

have the same magnitude. All

iron atoms are projected on

the c axis for a visual represen-

tation of the spiral structure.

Blue and red arrows represent

the magnetic moment in the

corresponding ab plane.

FeP has an incommensurate helical magnetic ground state, how-

ever, the details of the spin structure are still not completely clear.

The first spin structure was proposed by Felcher et al. in the early

1970s [123]. Neutron diffraction measurements on both powder

and single-crystal samples below the Néel temperature revealed

a magnetic modulation along the c-axis with a period of 29.2 Å

≈ 5 × c and corresponding propagation vector kh = 0.22 Å−1.

Similarly to the isostructural MnP [124] and CrAs [125], the

magnetic structure was determined as a “double-helix” propa-

gating along the c axis. To obtain a good fit of the diffraction

data, authors proposed two different cites for the iron ions with

different magnetic moments 0.46µB and 0.37µB. This model is

schematically shown in Fig. 5.2. The iron moments lying in the

ab plane form ferromagnetic layers perpendicular to the c axis.

Spins in the two nearest planes separated by 0.1× c are nearly

antiparallel with the fixed relative angle of 176◦. Following the

c axis, the direction of spins changes forming a helical structure

nearly commensurate with the c axis.

However, following Mössbauer studies performed by several

groups [121,126] result in a long-standing uncertainty concern-

ing the exact details of the spin structure. It was impossible to

fit Mössbauer spectra using an easy “double-helix” model pro-

posed by Felcher et al. Instead, the authors proposed a modified

spiral model with anharmonicity (bunching) of the iron spins

and possible modulation of the magnetic moments in the ab

plane. According to this model, iron spins are crowding along the a axis. Further detailed

studies using polarized neutron diffraction analysis are needed to identify details of the spin

structure.
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5.2 Neutron scattering experiments

5.2.1 FeP single crystals

Figure 5.3: FeP crystals.

Large single crystals of FeP (up to 0.5 g in mass,

see Fig. 5.3) of very high crystalline quality were

recently grown by our collaborators using chemical

vapor transport with iodine transport agent [118].

The optimized temperature regime, reported in de-

tails in Ref. [118], allowed them to grow large high-

quality single crystals suitable for INS experiments.

The grown crystals were extensively characterized

to confirm their composition, crystal symmetry, unit cell parameters, single crystallinity,

magnetic, and transport properties [118]. The elemental analysis and chemical characteri-

zation, done by means of energy-dispersive x-ray spectroscopy (EDX), revealed iron and

phosphorus in 1:1 proportion corresponding to the FeP stoichiometric composition.

a)

b)

Figure 5.4: Laue patterns of a FeP

crystal measured along its a and b

crystallographic directions (panels

a and b, respectively). Reproduced

from Ref. [118].

Crystals used for the magnetization, susceptibility, x-ray

diffraction, and neutron scattering experiments were aligned

using the x-ray Laue backscattering technique. Typical Laue

diffractograms are shown in Fig. 5.4. Besides the orientation

of a crystal, the Laue method allows us to draw conclusions

about the perfection of a sample. In the case of our FeP

samples, the spots in the Lauegrams are well resolved, sharp,

with intensity concentrated in a small area around the peak.

The spots are aligned along the arcs forming symmetric pat-

terns without noticeable artifacts. If we move the crystal in

the plane perpendicular to the x-ray beam, the Laue pattern

does not change the orientation and positions of the peaks.

Therefore, we can conclude that the crystals are of high qual-

ity with no twin domains. Also, we considered a possibility of

grains inside the samples, which the Laue method cannot de-

tect, but further neutron diffraction experiments confirmed

the uniformity of the samples in a bulk.

To check the crystal structure and determine the unit cell

parameters, x-ray powder and single-crystal diffraction were

utilised. Both methods confirmed the Pnma space group,
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Figure 5.6: Magnetic and transport properties of the FeP single crystal. (a) Temperature dependence of

the magnetic susceptibility measured on a single crystal of FeP in an external field of 1 T. (b) Temperature

dependence of the electrical resistivity (blue curve) and its derivative (green curve). Reproduced from

Ref. [118].

and the refined unit cell parameters (a = 5.1738(4) Å, b = 3.0877(4) Å, c = 5.7718(6) Å)

are in good agreement with the previously published results [127].
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Figure 5.5: Single-crystal x-ray diffraction map

of the (h k 0) plane measured at T = 300 K. Red

circles mark the Bragg peaks violating the Pnma

space group extinction rules. Reproduced from

Ref. [118].

The single-crystal x-ray diffraction measure-

ments performed in the wide temperature range

30–300 K confirmed the absence of any struc-

tural phase transition. Diffraction pattern of

the (h k 0) plane measured at 300 K is shown

in Fig. 5.5. Well resolved Bragg peaks prove

the good quality of the measured crystal. The

structure refinement confirmed the Pnma space

group. However, after a closer look at the data,

one can distinguish weak Bragg peaks with in-

teger Miller indices, which are forbidden by

the Pnma group extinction rules [see Fig. 5.5].

These peaks are present at all measured temper-

atures. On the current stage of the analysis they

were ignored during the structure refinement

procedure but definitely should be investigated

in the future. The presence of these peaks could originate from some sort of twinning or

indicate a lowering of the lattice symmetry and the consequent possibility of the existence

of two nonequivalent Fe sites in the unit cell. This possibility requires a closer investigation.
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Magnetic susceptibility measurements [Fig. 5.6 (a)] confirm a magnetic phase transi-

tion at about 120 K which coincides with the inflection point in the electrical conductivity

[Fig. 5.6 (b)]. The magnetic susceptibility was measured at 1 T field on the samples cooled

down without application of an external magnetic field. The measurements were done

along the b crystallographic direction and perpendicular to it and agree fairly well with the

literature [120]. There are several features in the susceptibility data that are worth attention.

The high level of the anisotropy and the broad maxima above the Néel temperature suggest a

short-range order far above the transition temperature. The behavior of the curves supports

the earlier proposed magnetic structure [123]— the susceptibility along the b axis reminds

an equally weighted superposition of the parallel and perpendicular susceptibilities of an

antiferromagnet. The curve measured along the direction perpendicular to the b axis (it is

not indicated in which exact direction it was measured) resembles the superposition with

the prevailing perpendicular component. These are in excellent agreement with the proper

screw structure propagating in the c direction.
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Figure 5.7: Magnetic field dependence of the FeP mag-

netization along the principal axes of the crystal mea-

sured for different temperatures well below the Néel

point (unpublished).

To investigate the magnetic-field depen-

dence of the FeP magnetization in the or-

dered state, we performed a set of mea-

surements along all principal directions of

the sample [Fig. 5.7]. For each orientation

the magnetization was measured at 10 K

and 2 or 3 K in the magnetic field up to

13 T. The field dependence along the b di-

rection exhibits pronounced oscillations at

3 K. This is a manifestation of the de Haas-

van Alphen (dHvA) effect in FeP. The effect

was extensively studied in the exhaustive

work of Nozue et al. [122]. The authors

measured the angular dependence of the

dHvA branches and discovered that some of

them are caused by a magnetic breakdown phenomenon — the tunneling of electrons from

one classical orbit in a magnetic field to another. This causes a formation of large closed

orbits in reciprocal space lying on surfaces beyond the magnetic Brillouin zone which cannot

be captured by the band structure calculations. The authors measured effective masses for

a field, aligned parallel to all principal directions, and reported the fairly small electronic

specific-heat coefficient 2.86 mJ K−2 mol−1.
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5.2.2 FeP reciprocal space overview
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Figure 5.8: Schematic of the reciprocal space of FeP.

Closed and open red circles represent structural Bragg

peaks allowed and forbidden by the structure factor.

Purple stars are at the positions of the magnetic satel-

lites. The (0 0 0) Bragg peak is not shown because it is

not accessible by our spectrometers.

The theory for the usual (that is, nearly fer-

romagnetic) helical spin structures is well

developed. However, the behavior of the

low-energy magnon modes in more exotic

antiferromagnetic and ferrimagnetic spin-

spiral structures is not fully understood, es-

pecially in materials in which neither local-

ized nor itinerant character of the magnetic

moments can be clearly established. FeP was

investigated by many techniques, but no Q-

resolved spin-dynamical studies by inelastic

neutron scattering (INS) have been reported

so far. The detailed data about the magnon

dispersion in FeP help to fill this gap in our

understanding of spin dynamics in itinerant noncollinear magnets, and, in particular, allow

us to quantify the relevant energy scales of magnetic interactions in FeP.

We have used thermal time-of-flight (TOF) and triple-axis spectroscopy (TAS) techniques

to map out dispersions of magnetic excitations in FeP. To make it easier to orient in the

reciprocal space of the sample, let us have a look at its structure. Figure 5.8 illustrates the

part of reciprocal space containing wave vectors that will be important in the following

study. The structure factor suppresses the intensity of some Bragg reflections allowed by

the space lattice. Therefore, we will distinguish two types of the structural Bragg peaks:

“allowed” and “forbidden”. As far as the magnetic ground state is an incommensurate helical

structure, the reciprocal space includes magnetic Bragg peaks accompanying the structural

ones. They are distanced from the positions of the structural Braggs by the propagation

vector of the spiral (0 0 ±qh). Here we should note that because of the very complex spin

structure, the intensity of the magnetic peaks does not exactly follow the structure factor

of the lattice. It allows us to observe the intense magnetic satellites around the forbidden

structural Bragg reflections.

5.2.3 Neutron diffraction

Single-crystal neutron diffraction measurements were conducted using the E2 diffractometer

at HZB, Berlin. It is a flat-cone geometry diffractometer with 2D detectors, which allows
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Figure 5.9: Diffraction panels from E2 diffractometer, HZB (setup 1). Left panel contains the data measured

at T = 10 K. Right panel corresponds to the paramagnetic state at T = 200 K. On the low temperature data

one can clearly see the appearance of the magnetic satellites at the incommensurate positions (0 0 ± qh) with

qh ≈ 0.2 r. l. u around the structural Bragg peaks.

measuring out-of-plane peaks. To get the in-plane signal we grouped the signal into eight

channels and then integrated the 4th and 5th channels manually. For the E2 experiment

(setup 1) the sample was a single crystal of FeP on the aluminum holder. It was mounted

in the 7 T cryomagnet with its [0 1 0] axis vertical. This crystal orientation allowed us to

access the most important high-symmetry directions of the reciprocal space, within the

equatorial (H 0 L) scattering plane. The instrument setup included PG monochromator

and 30′ radial collimation. The measurements were performed with a neutron wavelength

λ= 2.41 Å (ki = kf = 2.62 Å−1).

The diffraction patterns in the (h 0 l) scattering plane are shown in Fig. 5.9. We measured

two maps above and below the Néel temperature at T = 200 K and 10 K, respectively. On the

200 K map there are well-resolved Bragg peaks corresponding to the structural reflections

allowed by the structure factor. Concentric circles in both panels are the scattering from

the aluminum sample holder. After cooling down the sample below its Néel temperature,

additional peaks appear at the incommensurate positions (0 0 ±qh) with qh ≈ 0.2 r. l. u. These

peaks are magnetic satellites caused by the incommensurate periodic spin structure formed

along the c axis below the ordering temperature.
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5.2.4 Inelastic neutron scattering

TOF experiments

As the first step in the inelastic neutron study, we performed TOF experiment to get an

overview of the excitation spectrum of FeP. The experiment [128] was performed at the

MERLIN spectrometer (setup 2) at ISIS, UK. A single crystal of FeP with a mass ∼ 0.5 g was

mounted in the top-loading closed-cycle cryostat with its a axis vertical, providing (0 K L)

scattering plane. We collected the data at the base temperature of 7.5 K utilising neutrons

with incoming energies Ei = 27, 40, and 60 meV (λi = 1.74, 1.43, and 1.17 Å, respectively).

An outcome of the TOF experiment is a data file containing information about a part of

the 4-dimensional (4D) energy-momentum space (Q,ħhω) of the sample. To visualize the

data, we make cuts through this space along the directions of interest. Furthermore, it is

possible to combine symmetrically equivalent parts of the reciprocal space. In such a way

we improve the statistical quality of the data. All the data processing has been done using

HORACE software package [82,83].

The typical energy-momentum cuts are shown in Fig. 5.10. The top panel schematically

shows lines in reciprocal space along which the cuts were done. The strongest magnetic

Bragg peaks appear as incommensurate satellites around the (1 0 1) and (1 1 0) wave vectors.

They are clearly inequivalent, as the (1 0 1) wave vector corresponds to an allowed structural

Bragg reflection, while the (1 1 0) structural Bragg reflection is forbidden. Such a behavior is

not surprising, as a collinear ferrimagnet possesses two inequivalent magnetic Bragg peaks

at the structural zone center and at the zone boundary, hence when a ferrimagnetic order is

twisted into a spiral, both reflections split into a pair of incommensurate peaks.

In the inelastic channel, which we were so far able to map in the three-dimensional

(H K L) space with only limited statistics, several energy scales are clear. The measurements

revealed the gapped magnon dispersions emanating from the incommensurate magnetic

satellites of the same commensurate wave vector, separated in the L direction [Fig. 5.10 (c,

f)]. They can be resolved only at low energies, below ∼ 10 meV. After that, they merge into

a single broad peak.

The dispersion along the H direction [Fig. 5.10 (a, d)] is also quite shallow, so that the

spin waves emanating from the vicinity of (1̄ 1 0) and (1 1 0) merge around 25–30 meV

[Fig. 5.10 (a)]. In contrast, the dispersion along the K direction [Fig. 5.10 (b, e)] rises very

rapidly in comparison to the two other orthogonal directions. This means that effective

couplings along Y bonds are stronger than along X and Z bonds. The data cover an energy

range only up to 35 meV, but from the slope of the dispersion, one can guess the magnon
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Figure 5.10: Energy-momentum cuts through the TOF data (setup 2) measured at the MERLIN spectrometer,

plotted along high-symmetry directions after the symmetrization according to the orthorhombic crystal

symmetry. The sketches in the top panel illustrate the directions in reciprocal space (dashed red lines) along

which the cuts were done. The blurred spots depict the positions of the peaks which were projected out by the

symmetrization. Each sketch describes the data shown on the panels underneath it. All the data were measured

at the base temperature of 7.5 K with incident neutron energies of 40 meV (a, c), 60 meV (b) and 27 meV (d, e,

f). The momentum integration range in directions perpendicular to the image was set to ±0.1 r. l. u. for h and

l, and ±0.035 r. l. u. for the k direction.

bandwidth of a few hundred meV. As a side remark, we note that the magnon branch in FeP

prominently crosses an optical phonon around 27 meV, as seen in Fig. 5.10 (b), which could

be an interesting case for a separate study of magnon-phonon hybridization.
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TAS experiments

To resolve the details of the dispersions, we supplemented our TOF data with thermal-

neutron TAS measurements performed at IN8 (ILL, Grenoble) and PUMA (MLZ, Munich)

spectrometers. In our first IN8 experiment, we performed overview measurements and

revealed sharp magnon modes along the (1 1 L) direction in the vicinity of (1 1 0) while

staying in the (H H L) scattering plane. Subsequently, we complemented these data with

measurements at the PUMA spectrometer in the (H 0 L) scattering plane, where data along

the L direction were acquired along the (1 0 L) direction in the vicinity of (1 0 1). However,

because of the very steep magnon dispersion in the qy direction, which was oriented along

the out-of-plane direction in both experiments, which has the worst momentum resolution,

we could only see clearly the dispersion along L but not along H and K . Therefore, another

beamtime was requested at IN8 to complete the measurements in the (H K 0) and (0 K L)

scattering planes. In these configurations, we had better K resolution and were able to

reveal the magnon dispersion along H and K directions. All experiments were performed

on the mosaic of co-aligned single crystals of FeP with a total mass ∼ 1 g.

During the first IN8 experiment [129] (setup 3), the sample was mounted inside an

“orange”-type cryostat in the (H H L) scattering plane. In this configuration the (1 1 0) forbid-

den Bragg peak and its magnetic satellites (1 1 ± 0.2) could be reached. The experimental

configuration with PG filter and fixed kf = 2.662 Å−1 was used to achieve a sufficient res-

olution. Measurements were done at the base temperature of 2 K. In order to map out

the magnon dispersion along the (1 1 L) direction, we have measured multiple momentum

scans up to 35 meV and a few energy scans to quantify the magnitude of the spin gap at

(1 1 ± 0.2). To reach higher energies, we changed kf to 4.1 Å−1 and finished the mapping up

to 38 meV. The summarising plot is shown in Fig. 5.11 (a). Here we can clearly see gapped

W-shaped magnetic signal extending up to 35 meV. The dispersion is symmetric with respect

to (1 1 0) Bragg peak both in shape and intensity distribution. It is not surprising because

the reciprocal space is symmetric with respect to the (H H 0) plane, and both magnetic

satellites are equally distanced from the center of the first Brillouin zone. Two branches

emanating from the positions of the incommensurate magnetic satellites (1 1 ± 0.2) have

the gap value ∆g ≈ 7 meV. The gap value indicates a significant anisotropy in the system.

The outer branches of the dispersion are possibly back-folded at 0.5 r. l. u. This back-folding

is not well resolved because of the arc-shaped signal of non-magnetic origin. This signal at

around 27 meV is an optical phonon which we already have seen in Fig. 5.10 (b, c). Another

noticeable but unwanted signal — a sharp, well defined straight diagonal line crossing the

picture. It is a so-called “spurion”. Such artifacts frequently appear because of the nonideal
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Figure 5.11: Low temperature magnon dispersions in FeP along the (0 0 L) and (H 0 0) directions mapped out

with the thermal-neutron spectrometers IN8 (setup 3) (a), and PUMA (setup 4) (b, c). The measurements

were conducted with fixed kf = 2.662 Å−1 (below the horizontal red line) and kf to 4.1 Å−1 above it.

behavior of various sample environments or spectrometer components. This spurious sig-

nal makes it almost impossible to resolve the internal structure of the middle part of the

dispersion at this wave vector.

Figure 5.11 (b, c) shows the results of the complementary experiment at the TAS spec-

trometer PUMA. In this experiment (setup 4), the sample was mounted in the standard

cryostat with its b axis vertical, providing (H 0 L) scattering plane. This alignment was

chosen to be able to reach the (1 0 1) allowed magnetic Bragg peak and its magnetic satellites

(1 0 −0.8) and (1 0 −1.2). The measurements were performed at the temperature of 3.5 K.

To reach a compromise between intensity and resolution, the instrument was operated with

PG002 monochromator and analyzer in the double-focusing mode. Measurements were

performed with fixed kf = 2.662 Å−1 up to 15 and 12 meV for L and H scans, respectively. To

obtain sufficient momentum coverage for higher energies, we changed kf to 4.1 Å−1, which

naturally entails lower resolution. Just as during the IN8 experiment, we carried out a series

of momentum scans at different energies. We mapped out the dispersion along H and L

directions. This time we investigated magnetic satellites of the (1 0 1) Bragg peak. The

dispersion in L direction [Fig. 5.11 (b)] demonstrates the same behavior as around the (1 1 0)

forbidden Bragg but the intensity distribution is different. The branches emanating from

(1 0 −0.8) are noticeably more intense than the ones around (1 0 −1.2). It is a consequence

of the magnetic form factor, which diminishes with a momentum transfer. In Fig. 5.11 (c), the

H dependence of the dispersion stemming from (1 0 −0.8) is shown. From the comparison

of the (1 1 L) and (H 0 −0.8) data, we can conclude that the magnon dispersion behavior is

the same in the vicinity of forbidden and allowed structural Bragg peaks.
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Figure 5.12: Out of the (H H L) scattering plane measurements of FeP at the IN8 spectrometer (setup 3). (a)

Typical raw momentum scan along (1 K L) at L = 0 and E = 30 meV. Red curve is a fit of the data with two

Gaussians (green and purple dashed lines) and a linear background (blue dashed line). (b) (1 K L) constant

energy dispersion profiles obtained from the Gaussian fits of the data. (c) Energy-momentum profiles of the

magnon dispersion along the (1 K 0.2) direction measured IN8. Orange and blue circles correspond to the

data measured in the setup 3 and setup 5. The green line is a (1 K 0.2) dispersion modelled with SpinW (see

Section 5.3 for details).
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Figure 5.13: Two H scans centered at (1 1 0), measured

at 40 meV at L = 0 and L = 0.2 (to reach finite L, one

of the sample goniometers had to be tilted). The solid

lines are fits with two Gaussians.

IN8 spectrometer has a software feature

that allows one to easily navigate out of the

scattering plane using the goniometers in-

stalled under the cryostat. It allowed us

to make measurements outside the (H H L)

scattering plane and investigate the magnon

dispersion along K-direction. We made a

series of K-scans at different L and fixed

H = 1 r. l. u. in the vicinity of (1 1 0.2) mag-

netic satellite for energies between 30 and

40 meV. The typical scan for L = 0 and

E = 30 meV is shown in Fig. 5.12 (a). For

every single scan, we made a fit with two Gaussians and a linear background. The L-

coordinates of the Gaussian peak centers correspond to the dispersion positions at a given

energy. We summarised these fits in Fig. 5.12 (b). This plot can be interpreted as a set of the

(1 K L) constant-energy cuts of the dispersion at different energies, and one can observe its

energy evolution. The proportions between the reciprocal lattice units are preserved, and it

is seen that dispersion along K is much steeper than along L. The out-of-plane measurements

can give a general impression of the dispersion’s behavior, but the resolution is quite low

to expect accurate values. The next IN8 experiment (setup 5) revealed that the dispersion

in the K direction is even steeper and the interactions in FeP are highly anisotropic. In
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Figure 5.14: Measured intensity along the (1 K 0.2) and (0 K 2.5) directions, presented as a color map. The

markers represent the Gaussian fits of the data measured along K direction at different L and H values.

Fig. 5.12 (c), the energy-momentum dispersion profiles are shown for setups 3 and 5. The

green line is a (1 K 0.2) dispersion modeled with SpinW software and will be discussed in

Section 5.3.

During the next experiment [130] at IN8 (setup 5), we used the same pre-aligned array

of FeP single crystals. The measurements were started with the sample mounted in the

(H K 0) plane, and after two days the sample was re-oriented into (0 K L). In the first case,

the measurements were done near the structurally forbidden (1 1 0) reflection that has

two magnetic satellites. Both H- and K-scans were performed. In the second case, the

measurements were carried out near the structurally allowed (0 0 2) and (0 1 3) wave vectors.

Here we mostly performed K scans at several L values and at different energies up to 70 meV.

We chose the experimental configuration with PG filter and fixed kf = 4.1 Å−1 in order to

have access to higher energies. All measurements were done at the base temperature of 1.5

K. Due to the improved momentum resolution along K , we could clearly resolve the magnon

peaks both along the H direction [see Fig. 5.13 for an example] and along the K direction

[Fig. 5.15].

The steepness of the dispersion along the K direction leads to the fact that the dispersion

at high energies is almost independent of L. In Fig. 5.14 we summarize the data collected

along the (1 K 0.2) and (0 K 2.5) directions in the form of a color map. The fitting results

for the peak positions are overlayed as data points for different values of L. They show

a linear dispersion and nearly coincide within the accuracy of the fit. By extrapolation, a

magnon bandwidth of about 500 meV can be estimated for this momentum direction. Higher

background in the energy range between 50 and 55 meV is due to an optical phonon.
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Figure 5.15: Several representative momentum scans along the K direction, revealing the splitting of two

magnon branches at high energies. The solid lines are fits with Gaussians.

5.3 Localised spin approach to magnon spectrum in FeP

5.3.1 Motivation

FeP attracted our attention because of its exotic spin structure — so-called “double helix”. This

structure was proposed by Felcher [123], but its exact details are still not fully understood.

Our collaborators performed ab initio calculations for this system and estimated the energies

of a few collinear magnetic ground states. To illustrate these states let me consider the

magnetic sublattice of iron phosphide. There are 4 crystallographically equivalent Fe sites in

the FeP unit cell. In Fig. 5.16 (a) they are shown with colors: red, green, yellow, and blue.

Sites are sorted according to their z coordinate, so the red one has the smallest z = 0.2,

then goes the green one with z = 0.3, and so on. The sites of each color form the set of
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Figure 5.16: Schematic of the possible spin structures of FeP. (a) AFM spin ordering on the FeP magnetic

sublattice. The dashed cuboid represents a unit cell. The four exchange integrals are shown by the lines and

labels of the same colors: first-, second-, third-, and fourth-NN — J1, J2, J3, and J4, respectively. (b) Several

commensurate spin configurations with corresponding k and φ parameters. Each arrow represents a FM layer.

(c) Illustration of spin arrangements for k = 0.2 and different φ values according to our parametrisation (see

text).

ferromagnetic (FM) layers in the ab plane. In Fig. 5.16 (b) each arrow represents a FM layer.

The final incommensurate magnetic structure with propagation vector along the c axis can be

constructed by stacking red, green, yellow, and blue FM layers one by one with appropriate

rotation of the magnetization vector. In Fig. 5.16 (a), a commensurate antiferromagnetic

(AFM) structure (k = 0) is shown.

All collinear spin structures with k = 0 can be described by the 4-dimensional structure

vector. The index of a coordinate corresponds to the Fe site in the same order as it was

introduced above. The value of each coordinate can be either 1 or −1. In Fig. 5.16 (b)

several configurations are shown with the appropriate structure vectors. The results of DFT

calculations [131] give us the energies of the following states:
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• E(1111) = −2.2 meV,

• E(111̄1̄) = −7.4 meV,

• E(11̄1̄1) = −7.6 meV,

• E(11̄11̄) = −14.3 meV.

The question that can be asked is whether it is possible to describe the magnetic structure

and magnon spectrum in FeP using the local-spin approximation, despite the metallic

behavior of resistivity and susceptibility. In the following investigation, we will try to address

this question. The numerical analysis was done using the Matlab-based SpinW software [17].

5.3.2 Model

Assuming that the magnetic behavior in FeP can be described in the local-spin approximation,

the effective spin Hamiltonian can be constructed. The minimum set of exchange parameters

which can roughly reproduce the DFT results consists of J1 and J2 — exchange integrals

between the first- and second nearest-neighbors (NN) [blue and red lines in the Fig. 5.16 (a)].

Since the third-NN exchange (green) does not influence the energy differences between

the states considered in the DFT study, its value is irrelevant. We fixed J3 = −1 meV to

stabilize FM layers, according to the previously proposed structure. J1 = J2 = 0.5 meV

roughly reproduces the energy differences obtained in DFT.

So far the model is non-frustrated and therefore can only have collinear solutions. From

the experiment, we know that the ground state of FeP is a helical structure with a propagation

vector along the c direction. To be able to capture this behavior, the model has to be extended

to include incommensurate solutions. For this one needs to introduce frustration. If the

forth-NN exchange J4 is added (black), it starts to compete with J2 (red). Both exchanges

couple the spins in the c direction, so one can expect an appearance of incommensurability

in the required direction.

In this study, we constructed a magnetic phase diagram of the model as a function

of J2 and J4 exchange parameters. During the calculation, we minimized classical spin

energy, with respect to the spin structure. To describe different spin configurations we

introduce two parameters, k and φ. To illustrate their meaning, we schematically show

several spin arrangements for a fixed k and different φ values in Fig. 5.16 (c). The angle

between two red arrows is the angle by which the whole spin structure rotates from one unit

cell to another. It is determined only by the parameter k and is equal to 2πk. Now we will

describe the spin arrangement within the unit cell. To define it we utilize both parameters.

From the symmetry of the problem, it follows that the angle between the red and yellow

arrows is exactly equal to πk — half the angle between two adjacent red arrows. The same

symmetry considerations lead to equal angles between the pairs of arrows “red-green” and
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“yellow-blue”. we expressed this angle as π+πkφ. This form can be interpreted as the AFM

order of spins (π) plus some deviation (πkφ). The deviation is given by the parameter φ —

the fraction of the angle between the red and yellow arrows. This choice was motivated by

the DFT calculations and the previously proposed FeP spin structure. The latter states that

the angle between the spins inside “red-green” and “yellow-blue” pairs is 176◦. Varying k

and φ, one can get all possible collinear spin structures. The relevant ones are shown in

Fig. 5.16 (b) with corresponding values of k and φ.

The phase diagram we will present goes far beyond the problem initially motivated by

FeP and covers a wide range of exchange parameters −1.5J1 ¶ J2 ¶ 1.5J1 and −1.5J1 ¶

J4 ¶ 1.5J1, containing both FM and AFM exchanges.

Since classical ground state depends only on the ratios between the exchange parameters,

all energetic variables are normalized by J1. Furthermore, we added a small single-ion

anisotropy in the c direction. It prompts the spins to rotate in the ab plane, whereby favoring

the helical-like structure among other possible incommensurate solutions (e.g. cycloidal).

5.3.3 Classical phase diagram

To construct a J2 − J4 phase diagram for the system, we fixed the AFM value of the J1
exchange parameter. For each set of exchange parameters in the range −1.5J1 ¶ J2 ¶ 1.5J1
and −1.5J1 ¶ J4 ¶ 1.5J1, we calculated the energies of the states with 0 ¶ k ¶ 2 and

0 ¶ φ ¶ 1. Figure 5.17 (a) shows the energy landscape for J2 = J1 and J4 = 1.5J1. Here

both J2 and J4 are AFM and the solution falls into the pure (11̄11̄) state with k = 0 and

φ = 0 (star marker). Note that for k = 0 the parametrisation does not distinguish states

with different φ values. Now let us follow the evolution of the ground state of the system

upon decreasing J4. While J4 stays positive (AFM), the system favours the same (11̄11̄)

state. Even when it becomes zero, the state is preserved. Upon further decrease of J4 it turns

into FM (J4 < 0) which leads to competition with AFM J2. Nevertheless, the effect is not

immediate: only after a certain critical value, the incommensurability emerges. Fig. 5.17 (b)

shows a similar landscape but for J4 = −0.22J1 where the minimum appears at k = 0.15

and φ = 0.65. That means that the first-NN are tilted one against another more than the

second-NN (e.g. green and yellow arrows). Equal tilting would correspond to φ = 0.5.

According to our results, the transition happens discontinuously. The further increase in

the accuracy of the calculations did not lead to the smooth dependence. This suggests that

we are observing a first-order phase transition. A very large negative J4 suppresses the J2
influence, and the system tends to a marginal commensurate state. Fig. 5.17 (c) depicts

the classical ground-state energy (black dots) vs. the propagation parameter k for different
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a) c)b)

Figure 5.17: The results of calculations for J2 = J1. a, b) φ − k energy maps for two states with J4 = 1.5J1
and −0.22J1. Red stars depict positions with minimal energies. c) Energy-k dependence for different J4/J1
states. Every curve has a fixed φ corresponding to the ground state value for this particular set of exchange

parameters. States with minimal energies are marked with black dots.

J4 values. Antiferromagnetic J4 values correspond to the commensurate states with k = 0.

Further decrease of the J4/J1 ratio leads to the emergence of incommensurability. The

incommensurability parameter k shows very rapid J4 dependence for low ferromagnetic J4
values and slows down for large ones.

Combining all ground states for each set of exchange parameters, we constructed the

final phase diagrams which are shown in Fig. 5.18. Here we want to emphasize that the J3
value does not affect the ground-state order, therefore it was fixed to J3 = −2J1 to stabilize

the ferromagnetic order in the ab plane. The possible commensurate spin configurations

are shown in Fig. 5.18 (a).

The first diagram depicts k as a function of the J2 and J4 parameters following by a

similar diagram for the parameter φ. Notice that the phase diagram is symmetric to the line

connecting the upper left and lower right corners of the picture. But the symmetry in the

shape of the regions on the diagram does not lead to symmetry in the corresponding phases.

There are four different phases marked with Roman numerals in the diagrams. The

whole regions II and III correspond to the commensurate collinear states. Region II contains

states with k = 0 and φ = 0, region III — states with k = 1 and φ = 0. As the parameter

k is responsible for the rotation of the unit cell as a whole, integer k values point on the

FM arrangements of the unit cells with respect to each other for both regions. At the same

time, the internal spin structures are different but in both cases collinear. Regions I and IV

are more complex. First, let us consider region I. When J2 has large FM values, the spins

in the “green-yellow” pairs favor FM alignment. At the same time, strong AFM J4 leads

to the AFM order within the “red-blue” pairs. Both factors together give the internal spin

structure shown on the Fig. 5.18 (a) (I). The calculated k = 1.5 means the AFM arrangement
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Figure 5.18: Calculated phase diagrams of the spin ordering on the FeP magnetic sublattice. (a) Schematic of

the possible commensurate structures. (b, c) Classical J2 − J4 phase diagrams containing four commensurate

phases: I, II, III, IV. The regions with incommensurate states are separating the areas with a commensurate

order. In addition, the location of the realistic FeP compound is indicated by the red marks.

between the unit cells. When we decrease the FM J2 an incommensurability in the c direction

emerges. The evolution of the k and φ parameters during such change of the J2 is shown

on the second panel in Fig. 5.19. The same considerations for the IV region lead to the spin

arrangement is shown in Fig. 5.18 (a) (IV) and AFM ordering of the unit cells. The transition

between regions happens discontinuously in both k and φ. We observe the same behavior

crossing other borders between the regions of the phase diagram [Fig. 5.19].

Summarising these results, we conclude that the localized-spins approach to our system

produces a rich phase diagram with a wide variety of spin states including incommensurate

ones. Helical states are induced by introducing the 4th NN exchange (between red and blue

spins). They take place within limited ranges of exchange parameters separating the areas

with commensurate order. It is important to pay attention to the very sensitive dependence of

k parameter on the exchange interactions. Such a steep dependence suggests that quantum

phenomena and/or higher-order corrections can significantly influence the exact degree of

incommensurability.

5.3.4 Application to FeP

Now we can project the real FeP compound on the phase diagram. The only firmly established

experimental fact concerning FeP spin structure is the value of its helical pitch (k = 0.2 r. l. u.).

It was confirmed in neutron diffraction measurements conducted by two independent

groups [118,123]. There are several regions on the phase diagram which can satisfy this value
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Figure 5.19: 1D cuts through the phase diagrams in Fig. 5.18 (b, c) for J2 and J4 equal ±J1. Different panels

illustrate the transitions between the separate commensurate phases of the diagrams.

of k. All of them are situated close to the boundaries of phases II and III. However, the results

of DFT calculations on FeP impose constraints on the values of exchange interactions (J2 ≈ J1,

FM J4). The residual locations are marked with the red signs in Fig. 5.18. This area matches

with J2 ≈ J1 and J4 ≈ −0.24J1, and the corresponding parameters are k = 0.2 r. l. u. and

φ = 0.65. This result is in good agreement with the experimentally measured propagation

vector of the spiral and with the DFT calculations. Parameter φ = 0.65 roughly corresponds

to the angle 203◦ between the closest neighboring spins in the c direction (e.g. red and

green). It differs from the previously proposed value (176◦). This may indicate that our

model is not able to describe all details of the behavior of FeP or that the later model is not

completely correct.

5.3.5 Effect of J6

As the next step, we investigate the stability of the solutions to the possible effects of the

exchanges with farther neighbors. J5 (the diagonal exchange between the red and green

spins) brings nothing new to my study as it is equivalent to an effective tuning of J2. The next

nontrivial exchange is J6 [Fig. 5.20]. It couples red with yellow and green with blue spins

which were not directly coupled before. We start from the configuration suggested by the

DFT and diffraction experiments [red markers in Fig. 5.18 (a, b)] with J2 = J1, J3 = −2J1,

and J4 = −0.24J1. Fixing these exchanges, we vary J6 in a wide range, including both

FM and AFM values. For every set of exchange parameters, we find a state with minimal

energy — the ground state, characterized by k and φ parameters.
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a) b) c)

Figure 5.20: (a) Schematic illustration of the J6. (b, c) J6 dependence of the k and φ parameters. The

calculations were done with fixed J2 = J1, J3 = −2J1, and J4 = −0.24J1.

The resulting J6 dependences of k and φ are shown in Fig. 5.20 (b, c). We found that

J6 = 0.01J1 reproduces the propagation vector deduced from the experiment. Parameter

φ stays unchanged too. The value 0.01J1 is within the numerical error of my calculations.

From this, we can conclude that the solution does not depend on the J6 and we can skip it

for further analysis.

5.3.6 Dynamics

Now, when we have an estimation of the exchanges in the system, we can examine its

magnon spectrum. To reproduce the energy scale comparable with the experiment, we

multiplied the exchanges by some arbitrary number. It is allowed because the classical

ground state depends only on the ratios of the exchange parameters.

To reproduce the neutron spectra, we calculated dynamical spin-spin correlation functions

for a few directions in reciprocal space using linear spin wave theory. Typical spectra for

different incommensurate regions of the phase diagram are shown in Fig. 5.21. The finite

energy resolution is simulated by convolution with a Gaussian function.

One can notice that spectra can be divided into two groups. The first group includes

A and D spectra that look the same. The spectrum consists of two magnon bands well

separated in energy. It reminds the situation when spins form strongly bonded clusters that

are weakly connected. However, in our case, the role of “spin clusters” is played by chains

of spins strongly FM coupled along the b direction. The second group consists of B and C.

According to our knowledge, the FeP spectrum belongs to the second one. These spectra

are characterised by two intense magnon branches emanating from the magnetic ordering

vectors qm = (0, 0,±0.2) r. l. u. In contrast to the previous case, here we have a single band

of excitations that appears in a W-shaped form.
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Figure 5.21: Simulated spectra for different incommensurate regions of the phase diagram.

5.3.7 INS spectra of FeP

Now we can compare the results of the SpinW simulations with real neutron data [Fig. 5.22 (a,

d)] collected at the TAS spectrometers IN8 (ILL, Grenoble) and PUMA (MLZ, Munich). For

better agreement with the measured spectra, we scaled the exchange parameters, keeping

the ratios between them. The J3 exchange can be scaled independently because it does not

influence the ground-state order. This is allowed by the fact that the spin structure in the

ground state depends only on the ratio of the exchange parameters but not on their actual

value. The final exchange integrals which we used in the model are:

• J1 = 7.2 meV,

• J2 = J1 = 7.2 meV,

• J3 = 5.25J1 = −37.8 meV,

• J4 = −0.24J1 = −0.41 meV.

Any neutron spectrum measured along a given direction in reciprocal space has a finite

momentum resolution in all three dimensions. The resulting data along (0 0 L) is an integral

within finite ranges along (H 0 0) and (0 K 0). To compare my model with the data, we

integrated the simulated spectrum in directions orthogonal to the direction of interest. The

integration ranges were set to ±0.01 r. l. u. along all directions, and the resulting dispersions

are shown in Fig. 5.22 (b, e). The spectrum along (1 1 L) consists of a well resolved W-

shaped magnon signal with two minima at qm ≈ (0, 0,±0.2) r. l. u. and a weakly dispersed

arc-shaped phonon branch at about 25 meV. The stripe crossing the image is a spurion: the

width is lower than the instrument resolution and it does not follow the symmetry of the
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a) b) c)

d) e) f)

Figure 5.22: (a, d) Experimental colormap of the neutron spectrum of FeP along (1 1 L) (IN8, ILL) and

(H 0 −0.8) (PANDA, MLZ). The black and white dots show the intensity maxima obtained from the fitting with

two Gaussians. (b, e) SpinW simulation of the magnon spectra along (1 1 L) and (H 0 −0.8). (c, f) Spin-wave

dispersions calculated with SpinW.

crystal. In (H 0 −0.8) direction the dispersion is V-shaped signal emanating from the position

of the (1 0−0.8) magnetic Bragg peak. The instrument resolution was not sufficient to clearly

resolve separate branches thus we see a vague intensity in the middle part. The dots in the

figures show the intensity maxima obtained from fitting with two Gaussians. To compare

the modelled dispersion along (1 K 0.2) with the IN8 data [see Fig. 5.12 (c) and 5.23 (f)].

Though the model captures the main features of dispersion, the calculated spectrum is

narrower. Further tuning of the exchange parameters did not improve the resemblance of

the two spectra. Nevertheless there are noticeable similarities between the experimental

[Fig. 5.22 (a, d)] and simulated [Fig. 5.22 (b, e)] spectra. First of all, it is the W-shape of the

signal along (1 1 L) and the positions of the dispersion minima. In the measured spectra,

the signal intensity reaches its maximum at about 7 meV and drops markedly toward lower

energies. It resembles an anisotropy effect in the system. However, this gap may also be

an artifact due to the final instrument resolution. Despite the absence of anisotropy in

our model, we observe a similar intensity distribution caused by simulations with finite

resolution. Since we calculated only magnetic perturbations in the system, the phonon is

not reproduced.
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a) b) c)

d) e) f)

g) h) i)

j) k)

Figure 5.23: The overview of the SpinW simulated spectra of FeP. The red dots depict the experimental results

obtained from our neutron spectroscopy measurements.

The presence of the spurion makes it tricky to extract the energy and internal structure

near the saddle point in the middle. However, signal broadening in this region as a result of

finite resolution in the K direction along which the magnons are very steep is well reproduced.

Another possible feature of the (1 1 L) dispersion is a bend of the side branches around

±0.5 r. l. u. Their visibility and resolution is hampered by the presence of the phonon but

can still be distinguished. This bending does not occur in the simulated spectrum. If we
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Figure 5.24: Spin wave dispersions calculated with SpinW along (a) (H 1 0.2), (b) (1 K 0.2), and (c) (1 1 L)

directions passing through the (1 1 0.2) magnetic satellite.

consider the dispersion curves in Fig. 5.22 (c), we see that they intersect exactly at 0.5 r. l. u.,

moreover, the energy of the intersection is roughly the same as in the experimental spectrum.

Within the framework of the local-spin approximation, these branches do not feel each other.

A possible manifestation of the itinerant behavior of FeP may be the hybridization of the

dispersion curves, which leads to the bending of the spectrum at 0.5 r. l. u.

To have an exhaustive comparison of the modeled and experimental results, we fitted

the data from TOF experiments and plotted them over the simulated color maps [Fig. 5.23].

The experimental results nicely agree with simulated dispersions in the vicinity of structural

and magnetic Bragg peaks [Fig. 5.23 (a, b, d, e, f, g, h, i)]. The only discrepancy is in the

dispersion along the L direction [Fig. 5.23 (j, k)]. The modeled dispersion branches are too

wide in this direction and do not reproduce the possible bending of the measured dispersion

[see Fig. 5.22 (a)]. It can be the reason for the noticeable disagreement along the (0 K 3)

direction in Fig. 5.23 (c) — the modeled dispersion branches go up in energy very fast along

the L direction and overestimate the energy of the saddle point in the dispersion. As far as

a visible dispersion curve along the K direction is a cut of a 4D energy-momentum space

in the direction orthogonal to L, the energy of the dispersion in K is directly connected to

the slope of the outer branches of the dispersion along L. The data measured along the

K direction at different L [see Fig. 5.14] show almost no L dependence. If the branches

of the dispersion were as strongly dependent on the value of L as the model predicts, the

dispersion along K would be strongly dependent on the L value.

Another obvious problem — the energy of the middle bridge at (1 1 0) and (1 0 1̄). The

model predicts the value which is fairly lower than the experimental value. Of course,

scaling of the exchange parameters can lead to a corresponding increase in the slope of

the dispersion branches and, as a consequence, to an increase in the energy of the central

intersection, but this leads to a decrease in agreement in other directions. Now it is clear

that to obtain a good agreement with the experimental results, it is crucial to reproduce
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a bending of the dispersion’s branches along the L direction. Hopefully, it can be done by

adding one more exchange interaction along the c direction and will be done in future work.

The last thing which we want to discuss here is the bandwidth of the magnon excitations

in FeP. The model gives a magnon bandwidth of about 50–60 meV along the H and L

directions, and almost ten times larger in K [Fig. 5.24]. It agrees with the experimentally

observed behavior of the dispersion curves — the excitations along the K direction are much

steeper than in other orthogonal directions. Here the question may be asked: why does a

material with a rather three-dimensional crystal structure have such anisotropic magnetic

couplings?

5.4 Summary

In this chapter, we gave a short outlook of the current knowledge about iron monophosphide.

The material is interesting because of its exotic double-helix spin structure. FeP has been

investigated for a long time by many groups and techniques but the exact details of its

structure and the microscopic mechanism of magnetism remain unclear. Recently our

collaborators succeeded in growing high-quality big single crystals suitable for inelastic

neutron studies.

We performed a series of measurements and mapped out the magnon dispersion in a

wide range of energies and momentums. The data covers the energy range up to ∼ 30 meV

where the spin waves show up well-defined. The magnetic branches in the (0 K 0) direction

is much steeper than along two other principal axes. Our modelling gives the magnon

bandwidth of the order of ∼ 60 meV in (H 0 0) and (0 0 L), whereas the dispersion in (0 K 0)

goes further up to ∼ 520 meV. The existence of such a high anisotropy in a fairly 3D material

is an open question and definitely requires further research.

To interpret the data, we applied the local spin approximation approach to model the

spin structure and magnetic excitations in FeP. The phase diagram of the FeP magnetic

sublattice is constructed in a wide range of exchange parameters up to the fourth nearest

neighbor. When constructing the model, we used the minimum number of parameters,

which leads to a high degree of generality. Taking into account the neutron diffraction

and spectroscopy data, as well as DFT calculation results, we found that FeP spin structure

and magnon spectrum can be partially reproduced using a simple parametrization and

varying the exchange parameters. In addition to a similar spectrum shape, we were able

to reproduce the distribution of the signal intensity. In the experimental data, the neutron

scattering intensity has a pronounced maximum at energies of the order of 7 meV and
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rapidly decreases as the energy decreases. This may be due to the presence of anisotropy in

the system, leading to the opening of the energy gap in the spectrum of magnetic excitations.

However, and our model directly demonstrates this, such an intensity distribution can be

obtained by considering the finite resolution of the instrument. Thus, the question of the

existence of an energy gap in the magnon spectrum of FeP remains open. Moreover, the

absence of magnetic Bragg peaks of the second and higher orders in the diffraction data is

more likely in favor of a harmonic helicoid structure, which, in turn, suggests the absence of

anisotropy in the plane of spin rotation. Despite the fact that the proposed model reproduces

fairly well the main details of the experimental spectrum, there are still some differences. In

particular, the possible bending of magnon branches along (1 1 L) at about 0.5 r. l. u. In the

framework of the linear spin wave theory, this should not happen. Perhaps this indicates

insufficiency of the localized spin approximation to describe the system in detail and the

need to take into account the possible influence of itinerant magnetic effects.

Such a combined approach is widely used for the description of the magnetic excitations

in many systems. It reminds the situation with iron-arsenide superconductors. Their parent

compounds have an antiferromagnetic ground state [132–136], but its microscopic origin

remains debated. There is complementary evidence favouring both localized [137–141]

and itinerant [142–146] mechanisms. The inelastic neutron scattering experiments on

CaFe2As2 [147,148], parent compound of the “122” iron-arsenide family of superconductors,

revealed the magnon spectrum in the AFM ordered state. Its low-energy part, up to 100 meV,

can be fitted to a local-moment Heisenberg Hamiltonian. However, the dispersion above

100 meV and up to the maximum energy of about 200 meV appears broader in energy and

momentum than the instrument resolution. This was explained by the damping of spin

waves by particle-hole excitations [147]. The magnon spectrum is characterized by the

large in-plane anisotropy which cannot be explained within the localized picture. All these

facts lead to the conclusion that magnetism in iron-based superconductors has a complex

microscopic origin, and both localized and itinerant effects play important roles [148].

Another possible solution is to include further-neighbor exchange interactions in the

model and try to reproduce the experimental results while staying within the localized spin

approach.

Further theoretical study is needed to find out the microscopic mechanisms responsible

for the magnetic behavior in FeP. To determine the details of the magnetic structure, neutron

experiments with a polarisation analysis are planned by our group.
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