Home > Publications database > Device Performance of Emerging Photovoltaic Materials (Version 1) > print |
001 | 906221 | ||
005 | 20240712113007.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202002774 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 2128/30677 |2 Handle |
024 | 7 | _ | |a altmetric:95526247 |2 altmetric |
024 | 7 | _ | |a WOS:000596009400001 |2 WOS |
037 | _ | _ | |a FZJ-2022-01299 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Almora, Osbel |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Device Performance of Emerging Photovoltaic Materials (Version 1) |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1645346149_3474 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
536 | _ | _ | |a 1213 - Cell Design and Development (POF4-121) |0 G:(DE-HGF)POF4-1213 |c POF4-121 |f POF IV |x 1 |
536 | _ | _ | |a 1214 - Modules, stability, performance and specific applications (POF4-121) |0 G:(DE-HGF)POF4-1214 |c POF4-121 |f POF IV |x 2 |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 3 |
536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |f POF IV |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Baran, Derya |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bazan, Guillermo C. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Berger, Christian |0 P:(DE-Juel1)177687 |b 3 |
700 | 1 | _ | |a Cabrera, Carlos I. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Catchpole, Kylie R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Erten-Ela, Sule |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Guo, Fei |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Hauch, Jens |0 P:(DE-Juel1)177626 |b 8 |
700 | 1 | _ | |a Ho-Baillie, Anita W. Y. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Jacobsson, T. Jesper |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Janssen, Rene A. J. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Kirchartz, Thomas |0 P:(DE-Juel1)159457 |b 12 |
700 | 1 | _ | |a Kopidakis, Nikos |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Li, Yongfang |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Loi, Maria A. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Lunt, Richard R. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Mathew, Xavier |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a McGehee, Michael D. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Min, Jie |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Mitzi, David B. |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Nazeeruddin, Mohammad K. |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Nelson, Jenny |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Nogueira, Ana F. |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Paetzold, Ulrich W. |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Park, Nam-Gyu |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Rand, Barry P. |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)143905 |b 27 |u fzj |
700 | 1 | _ | |a Snaith, Henry J. |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Unger, Eva |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Vaillant-Roca, Lídice |0 P:(DE-HGF)0 |b 30 |
700 | 1 | _ | |a Yip, Hin-Lap |0 P:(DE-HGF)0 |b 31 |
700 | 1 | _ | |a Brabec, Christoph J. |0 P:(DE-Juel1)176427 |b 32 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202002774 |g Vol. 11, no. 11, p. 2002774 - |0 PERI:(DE-600)2594556-7 |n 11 |p 2002774 - |t Advanced energy materials |v 11 |y 2021 |x 1614-6832 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906221/files/Advanced%20Energy%20Materials%20-%202020%20-%20Almora%20-%20Device%20Performance%20of%20Emerging%20Photovoltaic%20Materials%20Version%201.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906221 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177687 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)177626 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)159457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 27 |6 P:(DE-Juel1)143905 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 32 |6 P:(DE-Juel1)176427 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1213 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1214 |x 2 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 3 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 4 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-30 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2019 |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|