001     906270
005     20230522125342.0
024 7 _ |a 10.1016/j.gca.2022.01.011
|2 doi
024 7 _ |a 0016-7037
|2 ISSN
024 7 _ |a 1872-9533
|2 ISSN
024 7 _ |a 2128/30713
|2 Handle
024 7 _ |a altmetric:121152925
|2 altmetric
024 7 _ |a WOS:000783485400006
|2 WOS
037 _ _ |a FZJ-2022-01336
082 _ _ |a 550
100 1 _ |a Cai, Di
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Mg isotope composition of runoff is buffered by the regolith exchangeable pool
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645090818_27455
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a small, forested catchment underlain by gneiss (Conventwald, Black Forest, Germany), we found that the magnesiumisotope composition (d26Mg) of creek water did not show seasonal variability, despite variations in dissolved Mg concentrations. To investigate the potential controlling factors on water d26Mg values, we studied the Mg isotope composition of solid samples (bedrock, bulk soil, clay-sized fraction of soil, separated minerals, the exchangeable fraction of regolith) and water samples comprising time series of creek water, groundwater and subsurface flow. Subsurface flow from 0–15 cm depth (?0.80 ± 0.08‰) and 15–150 cm depth (?0.66 ± 0.17‰), groundwater (?0.55 ± 0.03‰), and creek water (?0.54 ± 0.04‰) are all depleted in heavy Mg isotopes compared to bedrock (?0.21 ± 0.05‰). Subsurface flow samples have similar d26Mg values to the regolith exchangeable fraction at the respective sampling depths. Also, groundwater and creek water show d26Mg values that are identical to those of the exchangeable fraction in the deep regolith. We suggest, therefore, that cation-exchange processes in the regolith control Mg concentrations and d26Mg values of creek water at our study site. This assumption was further verified by batch adsorption-desorption experiments using soil samples from this study, which showed negligible Mg isotope fractionation during adsorption-desorption. We propose that the exchangeable fraction of the regolith buffers dissolved Mg concentrations by adsorbing and storing Mg when soil solutions are high in concentration in the dry season and desorbing Mg when rainfall infiltrates and percolates through the regolith in the wet season. This mechanism may explain the near chemostatic behavior of Mg concentrations and the invariance of d26Mg values in creek water. In addition, the depth distribution of exchangeable Mg concentration and isotope composition in the regolith reflects mineral dissolution and secondary mineral formation in deep regolith (>3 m) and biological cycling in shallower depth (0–3 m). Magnesium stable isotopes thus provide an accurate snapshot of the geogenic (weathering) and the organic (bio-cycled) nutrient cycle.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Henehan, Michael J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Uhlig, David
|0 P:(DE-Juel1)177770
|b 2
|u fzj
700 1 _ |a von Blanckenburg, Friedhelm
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.gca.2022.01.011
|g Vol. 321, p. 99 - 114
|0 PERI:(DE-600)1483679-8
|p 99 - 114
|t Geochimica et cosmochimica acta
|v 321
|y 2022
|x 0016-7037
856 4 _ |u https://juser.fz-juelich.de/record/906270/files/Cai%20et%20al.%202022%20post-referee.pdf
|y Published on 2022-01-18. Available in OpenAccess from 2024-01-18.
909 C O |o oai:juser.fz-juelich.de:906270
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177770
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOCHIM COSMOCHIM AC : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GEOCHIM COSMOCHIM AC : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21