001     906279
005     20230128125811.0
024 7 _ |a 10.1002/hep4.1913
|2 doi
024 7 _ |a 2128/31378
|2 Handle
024 7 _ |a altmetric:123096698
|2 altmetric
024 7 _ |a pmid:35166071
|2 pmid
024 7 _ |a WOS:000754878800001
|2 WOS
037 _ _ |a FZJ-2022-01343
082 _ _ |a 610
100 1 _ |a Xu, Haifeng C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Single MHC‐I Expression Promotes Virus‐Induced Liver Immunopathology
260 _ _ |a Hoboken, NJ
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674828969_23946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Major histocompatibility complex I (MHC-I) molecules present epitopes on the cellular surface of antigen-presenting cells to prime cytotoxic clusters of differentiation 8 (CD8)+ T cells (CTLs), which then identify and eliminate other cells such as virus-infected cells bearing the antigen. Human hepatitis virus cohort studies have previously identified MHC-I molecules as promising predictors of viral clearance. However, the underlying functional significance of these predictions is not fully understood. Here, we show that expression of single MHC-I isomers promotes virus-induced liver immunopathology. Specifically, using the lymphocytic choriomeningitis virus (LCMV) model system, we found MHC-I proteins to be highly up-regulated during infection. Deletion of one of the two MHC-I isomers histocompatibility antigen 2 (H2)–Db or H2-Kb in C57Bl/6 mice resulted in CTL activation recognizing the remaining MHC-I with LCMV epitopes in increased paucity. This increased CTL response resulted in hepatocyte death, increased caspase activation, and severe metabolic changes in liver tissue following infection with LCMV. Moreover, depletion of CTLs abolished LCMV-induced pathology in these mice with resulting viral persistence. In turn, natural killer (NK) cell depletion further increased antiviral CTL immunity and clearance of LCMV even in the presence of a single MHC-I isomer. Conclusion: Our results suggest that uniform MHC-I molecule expression promotes enhanced CTL immunity during viral infection and contributes to increased CTL-mediated liver cell damage that was alleviated by CD8 or NK cell depletion.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20200501)
|0 G:(DE-Juel1)hkf7_20200501
|c hkf7_20200501
|f Forschergruppe Gohlke
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Huang, Jun
|0 P:(DE-Juel1)185067
|b 1
700 1 _ |a Pandyra, Aleksandra A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pandey, Piyush
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Ruifeng
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Zeli
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhuang, Yuan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gertzen, Christoph G. W.
|0 P:(DE-Juel1)174133
|b 7
700 1 _ |a Münk, Carsten
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Herebian, Diran
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Borkhardt, Arndt
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Recher, Mike
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 12
700 1 _ |a Esposito, Irene
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Oberbarnscheidt, Martin
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Häussinger, Dieter
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lang, Karl S.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lang, Philipp A.
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1002/hep4.1913
|g p. hep4.1913
|0 PERI:(DE-600)2881134-3
|n 7
|p 1620-1633
|t Hepatology communications
|v 6
|y 2022
|x 2471-254X
856 4 _ |u https://juser.fz-juelich.de/record/906279/files/Hepatology%20Communications%20-%202022%20-%20Xu%20-%20Single%20MHC%E2%80%90I%20Expression%20Promotes%20Virus%E2%80%90Induced%20Liver%20Immunopathology.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/906279/files/Xu%20et%20al_hep%20Com_rev2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/906279/files/Xu%20et%20al_hep%20Com_revision_R2.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:906279
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174133
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HEPATOL COMMUN : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:23Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-04-16T15:13:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HEPATOL COMMUN : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
920 1 _ |0 I:(DE-Juel1)IBG-4-20200403
|k IBG-4
|l Bioinformatik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)IBG-4-20200403
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21